1
|
Walter J, Hader M, Sengedorj A, Fietkau R, Frey B, Gaipl US. Broadband microwave spiral applicator (105-125 MHz) for in vitro examinations of hyperthermia-induced tumor cell death forms - first analyses with human breast cancer cells. Int J Hyperthermia 2023; 40:2265590. [PMID: 37813393 DOI: 10.1080/02656736.2023.2265590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Local tumor heating with microwave applicators has been used in multimodal breast cancer therapies. This hyperthermia allows to target small regions while marginally affecting healthy tissue. However, most preclinical examinations only use simplified heating methods. Microwave applicators employed for deep heating to provide the greatest depth of penetration operate in the tens to hundreds frequency. Therefore, we aimed to adapt and test a clinically often used broadband spiral applicator (105-125 MHz) for hyperthermia with clinically wanted temperatures of 41 and 44 °C in in vitro settings with human breast cancer cell lines and with simulations. MATERIAL AND METHODS A clinically used spiral-microwave applicator (105-125 MHz) was the basis for the construction, simulation, and optimization of the in vitro HT set-up under stationary conditions. Microwave effects on tumor cell death of two human breast cancer cell lines (hormone-receptor positive MCF-7 and triple-negative MDA-MB-231) were compared with conventional heating in a contact-heating chamber. Cell death forms were analyzed by AnnexinV/Propidium iodide staining. RESULTS An in vitro spiral applicator microwave-based heating system that is effective at applying heat directly to adherent breast cancer cells in cell culture flasks with medium was developed. Simulations with COMSOL proved appropriate heat delivery and an optimal energy coupling at a frequency of 111 ± 2.5 MHz. Apoptosis and necrosis induction and significantly higher cell death rates than conventional heating at both temperatures were observed, and MCF-7 showed higher death rates than MDA-MB-231 tumor cells. CONCLUSIONS Well-characterized in vitro heating systems are mandatory for a better understanding of the biological effects of hyperthermia in tumor therapies and to finally determine optimized clinical treatment schemes.
Collapse
Affiliation(s)
- Jannik Walter
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Hader
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Azzaya Sengedorj
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Androulakis I, Ferrero R, van Oossanen R, Manzin A, Denkova AG, Djanashvili K, Nadar R, van Rhoon GC. Design and Validation of Experimental Setup for Cell Spheroid Radiofrequency-Induced Heating. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094514. [PMID: 37177718 PMCID: PMC10181764 DOI: 10.3390/s23094514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
While hyperthermia has been shown to induce a variety of cytotoxic and sensitizing effects on cancer tissues, the thermal dose-effect relationship is still not well quantified, and it is still unclear how it can be optimally combined with other treatment modalities. Additionally, it is speculated that different methods of applying hyperthermia, such as water bath heating or electromagnetic energy, may have an effect on the resulting biological mechanisms involved in cell death or in sensitizing tumor cells to other oncological treatments. In order to further quantify and characterize hyperthermia treatments on a cellular level, in vitro experiments shifted towards the use of 3D cell spheroids. These are in fact considered a more representative model of the cell environment when compared to 2D cell cultures. In order to perform radiofrequency (RF)-induced heating in vitro, we have recently developed a dedicated electromagnetic field applicator. In this study, using this applicator, we designed and validated an experimental setup which can heat 3D cell spheroids in a conical polypropylene vial, thus providing a reliable instrument for investigating hyperthermia effects at the cellular scale.
Collapse
Affiliation(s)
- Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Turin, Italy
| | - Rogier van Oossanen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Turin, Italy
| | - Antonia G Denkova
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | | | - Robin Nadar
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| |
Collapse
|
3
|
Kok HP, Herrera TD, Crezee J. The Relevance of High Temperatures and Short Time Intervals Between Radiation Therapy and Hyperthermia: Insights in Terms of Predicted Equivalent Enhanced Radiation Dose. Int J Radiat Oncol Biol Phys 2023; 115:994-1003. [PMID: 36288756 DOI: 10.1016/j.ijrobp.2022.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE The radiosensitization effect of hyperthermia can be considered and quantified as an enhanced equivalent radiation dose (EQDRT), that is, the dose needed to achieve the same effect without hyperthermia. EQDRT can be predicted using an extended linear quadratic model, with temperature-dependent parameters. Clinical data show that both the achieved temperature and time interval between radiation therapy and hyperthermia correlate with clinical outcome, but their effect on expected EQDRT is unknown and was therefore evaluated in this study. METHODS AND MATERIALS Biological modeling was performed using our in-house developed software (X-Term), considering a 23- × 2-Gy external beam radiation scheme, as applied for patients with locally advanced cervical cancer. First, the EQDRT was calculated for homogeneous temperature levels, evaluating time intervals between 0 and 4 hours. Next, realistic heterogeneous hyperthermia treatment plans were combined with radiation therapy plans and the EQDRT was calculated for 10 patients. Furthermore, the effect of achieving 0.5°C to 1°C lower or higher temperatures was evaluated. RESULTS EQDRT increases substantially with both increasing temperature and decreasing time interval. The effect of the time interval is most pronounced at higher temperatures (>41°C). At a typical hyperthermic temperature level of 41.5°C, an enhancement of ∼10 Gy can be realized with a 0-hour time interval, which is decreased to only ∼4 Gy enhancement with a 4-hour time interval. Most enhancement is already lost after 1 hour. Evaluation in patients predicted an average additional EQDRT (D95%) of 2.2 and 6.3 Gy for 4- and 0-hour time intervals, respectively. The effect of 0.5°C to 1°C lower or higher temperatures is most pronounced at high temperature levels and short time intervals. The additional EQDRT (D95%) ranged between 1.5 and 3.3 Gy and between 4.5 and 8.5 Gy for 4- and 0-hour time intervals, respectively. CONCLUSIONS Biological modeling provides relevant insight into the relationship between treatment parameters and expected EQDRT. Both high temperatures and short time intervals are essential to maximize EQDRT.
Collapse
Affiliation(s)
- H Petra Kok
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Timoteo D Herrera
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|
6
|
Present Practice of Radiative Deep Hyperthermia in Combination with Radiotherapy in Switzerland. Cancers (Basel) 2022; 14:cancers14051175. [PMID: 35267486 PMCID: PMC8909523 DOI: 10.3390/cancers14051175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Moderate hyperthermia is a potent and evidence-based radiosensitizer. Several indications are reimbursed for the combination of deep hyperthermia with radiotherapy (dHT+RT). We evaluated the current practice of dHT+RT in Switzerland. METHODS All indications presented to the national hyperthermia tumor board for dHT between January 2017 and June 2021 were evaluated and treatment schedules were analyzed using descriptive statistics. RESULTS Of 183 patients presented at the hyperthermia tumor board, 71.6% were accepted and 54.1% (99/183) finally received dHT. The most commonly reimbursed dHT indications were "local recurrence and compression" (20%), rectal (14.7%) and bladder (13.7%) cancer, respectively. For 25.3% of patients, an individual request for insurance cover was necessary. 47.4% of patients were treated with curative intent; 36.8% were in-house patients and 63.2% were referred from other hospitals. CONCLUSIONS Approximately two thirds of patients were referred for dHT+RT from external hospitals, indicating a general demand for dHT in Switzerland. The patterns of care were diverse with respect to treatment indication. To the best of our knowledge, this study shows for the first time the pattern of care in a national cohort treated with dHT+RT. This insight will serve as the basis for a national strategy to evaluate and expand the evidence for dHT.
Collapse
|
7
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
8
|
Minnaar CA, Maposa I, Kotzen JA, Baeyens A. Effects of Modulated Electro-Hyperthermia (mEHT) on Two and Three Year Survival of Locally Advanced Cervical Cancer Patients. Cancers (Basel) 2022; 14:cancers14030656. [PMID: 35158924 PMCID: PMC8833695 DOI: 10.3390/cancers14030656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Modulated electro-hyperthermia (mEHT) is a mild to moderate, capacitive-coupled heating technology that uses amplitude modulation to enhance the cell-killing effects of the treatment. We present three year survival results and a cost effectiveness analysis from an ongoing randomised controlled Phase III trial involving 210 participants evaluating chemoradiotherapy (CRT) with/without mEHT, for the management of locally advanced cervical cancer (LACC) in a resource constrained setting (Ethics Approval: M120477/M704133; ClinicalTrials.gov ID: NCT033320690). (2) Methods: We report hazard ratios (HR); odds ratio (OR), and 95% confidence intervals (CI) for overall survival and disease free survival (DFS) at two and three years in the ongoing study. Late toxicity, quality of life (QoL), and a cost effectiveness analysis (CEA) using a Markov model are also reported. (3) Results: Disease recurrence at two and three years was significantly reduced by mEHT (HR: 0.67, 95%CI: 0.48-0.93, p = 0.017; and HR: 0.70, 95%CI: 0.51-0.98, p = 0.035; respectively). There were no significant differences in late toxicity between the groups, and QoL was significantly improved in the mEHT group. In the CEA, mEHT + CRT dominated the model over CRT alone. (4) Conclusions: CRT combined with mEHT improves QoL and DFS rates, and lowers treatment costs, without increasing toxicity in LACC patients, even in resource-constrained settings.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Department of Radiation Oncology, Wits Donald Gordon Academic Hospital, Johannesburg 2193, South Africa
| | - Innocent Maposa
- Department of Epidemiology & Biostatistics, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Jeffrey Allan Kotzen
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Department of Radiation Oncology, Wits Donald Gordon Academic Hospital, Johannesburg 2193, South Africa
| | - Ans Baeyens
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Radiobiology, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
9
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
10
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
11
|
Sneha KR, Benny N, Nair BN, Sailaja GS. Natural rubber latex assisted shape-attuned synthesis of intrinsically radiopaque and magnetic bioceramic nanocomposite with hyperthermia potential for cancer therapeutics. NEW J CHEM 2021. [DOI: 10.1039/d1nj01262b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N R latex assisted shape-attuned synthesis of intrinsically radiopaque and magnetic nanocomposite with hyperthermia potential for cancer therapeutics.
Collapse
Affiliation(s)
- K. R. Sneha
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
| | - Neenu Benny
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
| | - Balagopal N. Nair
- School of Molecular and Life Sciences (MLS)
- Faculty of Science and Engineering
- Curtin University
- Perth WA6845
- Australia
| | - G. S. Sailaja
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
- Interuniversity Centre for Nanomaterials and Devices
| |
Collapse
|
12
|
Bosque JJ, Calvo GF, Pérez-García VM, Navarro MC. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201234. [PMID: 33614070 PMCID: PMC7890498 DOI: 10.1098/rsos.201234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/04/2023]
Abstract
In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.
Collapse
Affiliation(s)
- Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Author for correspondence: Jesús J. Bosque e-mail:
| | - Gabriel F. Calvo
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Cruz Navarro
- Department of Mathematics-IMACI, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
13
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A, Minnaar CA. Quo Vadis Oncological Hyperthermia (2020)? Front Oncol 2020; 10:1690. [PMID: 33014841 PMCID: PMC7499808 DOI: 10.3389/fonc.2020.01690] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Heating as a medical intervention in cancer treatment is an ancient approach, but effective deep heating techniques are lacking in modern practice. The use of electromagnetic interactions has enabled the development of more reliable local-regional hyperthermia (LRHT) techniques whole-body hyperthermia (WBH) techniques. Contrary to the relatively simple physical-physiological concepts behind hyperthermia, its development was not steady, and it has gone through periods of failures and renewals with mixed views on the benefits of heating seen in the medical community over the decades. In this review we study in detail the various techniques currently available and describe challenges and trends of oncological hyperthermia from a new perspective. Our aim is to describe what we believe to be a new and effective approach to oncologic hyperthermia, and a change in the paradigm of dosing. Physiological limits restrict the application of WBH which has moved toward the mild temperature range, targeting immune support. LRHT does not have a temperature limit in the tumor (which can be burned out in extreme conditions) but a trend has started toward milder temperatures with immune-oriented goals, developing toward immune modulation, and especially toward tumor-specific immune reactions by which LRHT seeks to target the malignancy systemically. The emerging research of bystander and abscopal effects, in both laboratory investigations and clinical applications, has been intensified. Our present review summarizes the methods and results, and discusses the trends of hyperthermia in oncology.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonbuk, South Korea
| | | | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gyula Szigeti
- Innovation Center, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, St. Istvan University, Godollo, Hungary
| | - Carrie Anne Minnaar
- Department of Radiation Oncology, Wits Donald Gordon Medical Center, Johannesburg, South Africa
| |
Collapse
|
14
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020; 10:528. [PMID: 32351897 PMCID: PMC7174773 DOI: 10.3389/fonc.2020.00528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Hader M, Savcigil DP, Rosin A, Ponfick P, Gekle S, Wadepohl M, Bekeschus S, Fietkau R, Frey B, Schlücker E, Gaipl US. Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers (Basel) 2020; 12:cancers12051082. [PMID: 32349284 PMCID: PMC7281749 DOI: 10.3390/cancers12051082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
The treatment of breast cancer by radiotherapy can be complemented by hyperthermia. Little is known about how the immune phenotype of tumor cells is changed thereby, also in terms of a dependence on the heating method. We developed a sterile closed-loop system, using either a warm-water bath or a microwave at 2.45 GHz to examine the impact of ex vivo hyperthermia on cell death, the release of HSP70, and the expression of immune checkpoint molecules (ICMs) on MCF-7 and MDA-MB-231 breast cancer cells by multicolor flow cytometry and ELISA. Heating was performed between 39 and 44 °C. Numerical process simulations identified temperature distributions. Additionally, irradiation with 2 × 5 Gy or 5 × 2 Gy was applied. We observed a release of HSP70 after hyperthermia at all examined temperatures and independently of the heating method, but microwave heating was more effective in cell killing, and microwave heating with and without radiotherapy increased subsequent HSP70 concentrations. Adding hyperthermia to radiotherapy, dynamically or individually, affected the expression of the ICM PD-L1, PD-L2, HVEM, ICOS-L, CD137-L, OX40-L, CD27-L, and EGFR on breast cancer cells. Well-characterized pre-clinical heating systems are mandatory to screen the immune phenotype of tumor cells in clinically relevant settings to define immune matrices for therapy adaption.
Collapse
Affiliation(s)
- Michael Hader
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Deniz Pinar Savcigil
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Andreas Rosin
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Philipp Ponfick
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Stephan Gekle
- Biofluid Simulations and Modeling, Fachbereich Physik, University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Eberhard Schlücker
- Department of Chemical and Biological Engineering, Institute of Process Machinery and Systems Engineering (iPAT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
- Correspondence: ; Tel.: +49-9131-8544-258; Fax: +49-9131-8539-335
| |
Collapse
|
16
|
Kroesen M, Mulder HT, van Rhoon GC, Franckena M. Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2019; 9:1387. [PMID: 31921644 PMCID: PMC6928195 DOI: 10.3389/fonc.2019.01387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Michiel Kroesen
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Holland Proton Therapy Center, Delft, Netherlands
| | - H Tim Mulder
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard C van Rhoon
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martine Franckena
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|