1
|
Xing Y, Chen R, Zhang L, Chen Y, Zhang S, Diao X, Liu Y, Shi Y, Wei Z, Chang G. SLAM medical imaging enabled by pre-chirp and gain jointly managed Yb-fiber laser. BIOMEDICAL OPTICS EXPRESS 2024; 15:911-923. [PMID: 38404349 PMCID: PMC10890883 DOI: 10.1364/boe.506915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
We demonstrate a pre-chirp and gain jointly managed Yb-fiber laser that drives simultaneous label-free autofluorescence-multiharmonic (SLAM) medical imaging. We show that a gain managed Yb-fiber amplifier produces high-quality compressed pulses when the seeding pulses exhibit proper negative pre-chirp. The resulting laser source can generate 43-MHz, 34-fs pulses centered at 1110 nm with more than 90-nJ energy. We apply this ultrafast source to SLAM imaging of cellular and extracellular components in various human tissues of intestinal adenocarcinoma, lung adenocarcinoma, and liver.
Collapse
Affiliation(s)
- Yuting Xing
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihao Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobing Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincai Diao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yishi Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhiyi Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guoqing Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
2
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jeon H, Harvey M, Cisek R, Bennett E, Tokarz D. Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5376-5391. [PMID: 37854565 PMCID: PMC10581783 DOI: 10.1364/boe.500335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 10/20/2023]
Abstract
Alterations in collagen ultrastructure between human gastric adenocarcinoma and normal gastric tissue were investigated using polarization-resolved second harmonic generation (PSHG) microscopy. Cylindrical and trigonal symmetries were assumed to extract quantitative PSHG parameters, ρ, κ and S, from each image pixel. Statistically significant variations in these values were observed for gastric adenocarcinoma, indicating a higher disorder of collagen. Numerical focal volume simulations of crossing fibrils indicate increased S parameter is due to more intersecting collagen fibrils of varying diameters. These parameters were also able to distinguish between different grades of gastric adenocarcinoma indicating that PSHG may be useful for automated cancer diagnosis.
Collapse
Affiliation(s)
- Hwanhee Jeon
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Elisha Bennett
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
4
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
5
|
Characterization of collagen response to bone fracture healing using polarization-SHG. Sci Rep 2022; 12:18453. [PMID: 36323698 PMCID: PMC9630316 DOI: 10.1038/s41598-022-21876-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we extend on the three parameter analysis approach of utilizing a noninvasive dual-liquid-crystal-based polarization-resolved second harmonic generation (SHG) microscopy to facilitate the quantitative characterization of collagen types I and II in fracture healing tissues. The SHG images under various linear and circular polarization states are analyzed and quantified in terms of the peptide pitch angle (PA), SHG-circular dichroism (CD), and anisotropy parameter (AP). The results show that the collagen PA has a value of 49.26° after 2 weeks of fracture healing (collagen type II domination) and 49.05° after 4 weeks (collagen type I domination). Moreover, the SHG-CD and AP values of the different collagen types differ by 0.05. The change tendencies of the extracted PA, SHG-CD, and AP parameters over the healing time are consistent with the collagen properties of healthy nonfractured bone. Thus, the feasibility of the proposed dual-liquid-crystal-based polarization-SHG method for differentiating between collagen types I and II in bone fracture healing tissue is confirmed.
Collapse
|
6
|
Bouzin M, Marini M, Chirico G, Granucci F, Mingozzi F, Colombo R, D'Alfonso L, Sironi L, Collini M. Melanin concentration maps by label-free super-resolution photo-thermal imaging on melanoma biopsies. BIOMEDICAL OPTICS EXPRESS 2022; 13:1173-1187. [PMID: 35414966 PMCID: PMC8973199 DOI: 10.1364/boe.445945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/04/2023]
Abstract
Surgical excision followed by histopathological examination is the gold standard for melanoma screening. However, the color-based inspection of hematoxylin-and-eosin-stained biopsies does not provide a space-resolved quantification of the melanin content in melanocytic lesions. We propose a non-destructive photo-thermal imaging method capable of characterizing the microscopic distribution and absolute concentration of melanin pigments in excised melanoma biopsies. By exploiting the photo-thermal effect primed by melanin absorption of visible laser light we obtain label-free super-resolution far-infrared thermal images of tissue sections where melanin is spatially mapped at sub-diffraction 40-μm resolution. Based on the finite-element simulation of the full 3D heat transfer model, we are able to convert temperature maps into quantitative images of the melanin molar concentration on B16 murine melanoma biopsies, with 4·10-4 M concentration sensitivity. Being readily applicable to human melanoma biopsies in combination with hematoxylin-and-eosin staining, the proposed approach could complement traditional histopathology in the characterization of pigmented lesions ex-vivo.
Collapse
Affiliation(s)
- Margaux Bouzin
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- Equal contribution
| | - Mario Marini
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- Equal contribution
| | - Giuseppe Chirico
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR Institute for Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Francesca Granucci
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Francesca Mingozzi
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Roberto Colombo
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Laura D'Alfonso
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Laura Sironi
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Maddalena Collini
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR Institute for Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| |
Collapse
|
7
|
Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1622. [PMID: 32126587 DOI: 10.1002/wnan.1622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) consists of proteins and carbohydrates that supports different biological structures and processes such as tissue development, elasticity, and preservation of organ structure. Diseases involving inflammation, fibrosis, tumor invasion, and injury are all attributed to the transition of the ECM from homeostasis to remodeling, which can significantly change the biochemical and biomechanical features of ECM components. While contrast agents have played an indispensable role in facilitating clinical diagnosis of diseases using magnetic resonance imaging (MRI), there is a strong need to develop novel biomarker-targeted imaging probes for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level, for both early diagnosis and monitoring drug treatment. Herein, we will first review the pathological accumulation and characterization of ECM proteins recognized as important molecular features of diseases. Developments in MRI probes targeting ECM proteins such as collagen, fibronectin, and elastin via conjugation of existing contrast agents to targeting moieties and their applications to various diseases, are also reviewed. We have also reviewed our progress in the development of collagen-targeted protein MRI contrast agent with significant improvement in relaxivity and metal binding specificity, and their applications in early detection of fibrosis and metastatic cancer. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|