1
|
Qian X, Chen Z, Ji XM, Ji YL, Wang J, Liu YC, Zhou XC, Li QL, Li CY, Zhang AQ. Qingfei mixture modulates the immune responses in lung cancer through modulating mTOR signaling and gut microbiota-derived short-chain fatty acids. Heliyon 2024; 10:e29404. [PMID: 38660245 PMCID: PMC11041045 DOI: 10.1016/j.heliyon.2024.e29404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang Qian
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Zhuo Chen
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Xu-Ming Ji
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | - Jin Wang
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Yuan-Cai Liu
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | | | - Chang-Yu Li
- Zhejiang Chinese Medical University, Zhejiang, China
| | | |
Collapse
|
2
|
Tang X, Liu L, Li Y, Hao S, Zhao Y, Wu X, Li M, Chen Y, Deng S, Gou S, Cai D, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Zhang Z, Yao L, Shen J, Xiao Z, Du F. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. Biomed Pharmacother 2023; 166:115315. [PMID: 37579693 DOI: 10.1016/j.biopha.2023.115315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Polygonum perfoliatum L. is an herbal medicine that has been extensively used in traditional Chinese medicine to treat various health conditions ranging from ancient internal to surgical and gynecological diseases. Numerous studies suggest that P. perfoliatum extract elicits significant anti-tumor, anti-inflammatory, anti-bacterial, and anti-viral effects. Nevertheless, the underlying mechanisms of its anti-liver cancer effects remain poorly understood. Our study suggests that P. perfoliatum stem extract (PPLA) has a favorable safety profile and exhibits a significant anti-liver cancer effect both in vitro and in vivo. We identified that PPLA activates the cGMP-PKG signaling pathway, and key regulatory genes including ADRA1B, PLCB2, PRKG2, CALML4, and GLO1 involved in this activation. Moreover, PPLA modulates the expression of genes responsible for the cell cycle. Additionally, we identified four constituents of PPLA, namely taxifolin, myricetin, eriodictyol, and pinocembrin, that plausibly act via the cGMP-PKG signaling pathway. Both in vitro and in vivo experiments confirmed that PPLA, along with its constituting compounds taxifolin, myricetin, and eriodictyol, exhibit potent anti-cancer activities and hold the promise of being developed into therapeutic agents.
Collapse
Affiliation(s)
- Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Lei Yao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646600, Sichuan, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| |
Collapse
|
3
|
Huang J, Hao J, Nie J, Qian R, Li H, Zhao J, Wang Y. Possible Mechanism of Dysphania ambrosioides (L.) Mosyakin & Clemants Seed Extract Suppresses the Migration and Invasion of Human Hepatocellular Carcinoma Cells SMMC-7721. Chem Biodivers 2023; 20:e202200768. [PMID: 36694378 DOI: 10.1002/cbdv.202200768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Mexican tea (Dysphania ambrosioides (L.) Mosyakin & Clemants) is rich in phenolic acids and flavonoids and could be a potential medicinal herb that can be used for prevention of human hepatocellular carcinoma. The objective of this study was to elaborate the possible mechanism for the prevention or treatment of hepatocellular carcinoma using Mexican tea, and to provide new avenues for the utilization of the invasive plant. In this study, the D. ambrosioides seed extracts (CSE) were analyzed by gas chromatography-mass spectrometry, and the effects of CSE on proliferation, migration, invasion, and gene expression of SMMC-7721 cells were investigated. Eight compounds were identified in CSE, and the compound with the highest content was ascaridole (25.82 %). The proliferation was significantly inhibited by CSE (p<0.05), and IC50 values were 0.587 g/L, 0.360 g/L, and 0.361 g/L at 24 h, 36 h, and 48 h, respectively. Migration and invasion were significantly inhibited (p<0.05). The network pharmacology and transcriptome analysis indicated that 2-hydroxy-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one, cis-11-eicosenoic acid and 2-ethylcyclohexanone might be the active compounds. Transcriptome analysis indicated that the Wnt signaling pathway, which is related to migration and invasion, was significantly altered; this was verified by western blot assay. The expression of wnt11, lef1 and mmp7 genes in SMMC-7721 cells was significantly down-regulated (p<0.05), while gsk-3β was significantly up-regulated (p<0.05). These results indicate that CSE inhibits the invasion and migration of SMMC-7721 cells in hepatocellular carcinoma through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Junmei Hao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jintao Nie
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ruihua Qian
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Haiying Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yanan Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
4
|
Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:289-301. [PMID: 36990846 DOI: 10.1016/j.joim.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/07/2022] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury. METHODS To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity. RESULTS Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism. CONCLUSION Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
|
5
|
Liu G, Chang L, Qian Y, Lin J, Shang Z, Xu M, Wang F, Sun X, Jiang Y, Gao Y, Kong X. Quantitative proteomics reveals Polygonum perfoliatum L. ameliorates hepatic steatosis by promoting PPARs/CPT1A/CPT2-mediated fatty acid β-oxidation. Front Pharmacol 2023; 14:1016129. [PMID: 37033635 PMCID: PMC10076547 DOI: 10.3389/fphar.2023.1016129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a predominant contributor to end-stage liver disease in the forthcoming decades. Polygonum perfoliatum L. (PPL) is an herbal medicine with anti-lipid peroxidation and anti-inflammatory properties. However, detailed hepatoprotective effects of PPL against NAFLD and its underlying mechanisms are not fully understood. Here, we found that PPL protects against high fat diet (HFD)-induced hepatic steatosis, lipid peroxidation, and glucose-lipid metabolism dysfunction in NAFLD mice. We therefore performed a label-free quantitative proteomic profiling analysis to determine the effect of PPL treatment on liver tissue proteomics and identified that activated PPARs/CPT1A/CPT2-mediated hepatic fatty acid β-oxidation (FAO) process was significantly altered. In vitro treatment of hepatocytes with PPL confirmed this altered process and FAO inhibitor etomoxir (ETO) attenuated the lipid-lowering activity of PPL in hepatocytes. Ultra-high-performance liquid chromatography/Q Exactive-HFX (UPLC/QE-HFX) was used to determine the material basis of anti-NAFLD activity of PPL. Our results have demonstrated the efficacy and potential mechanisms of PPL as an effective pharmacological therapy of NAFLD.
Collapse
Affiliation(s)
- Guanjie Liu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Ling Chang
- Department of Gastroenterology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Min Xu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yun Jiang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yun Jiang, ; Yueqiu Gao, ; Xiaoni Kong,
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yun Jiang, ; Yueqiu Gao, ; Xiaoni Kong,
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- *Correspondence: Yun Jiang, ; Yueqiu Gao, ; Xiaoni Kong,
| |
Collapse
|
6
|
Seimandi G, Álvarez N, Stegmayer MI, Fernández L, Ruiz V, Favaro MA, Derita M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules 2021; 26:5956. [PMID: 34641500 PMCID: PMC8512787 DOI: 10.3390/molecules26195956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of new pharmaceutical identities, particularly anti-infective agents, represents an urgent need due to the increase in immunocompromised patients and the ineffectiveness/toxicity of the drugs currently used. The scientific community has recognized in the last decades the importance of the plant kingdom as a huge source of novel molecules which could act against different type of infections or illness. However, the great diversity of plant species makes it difficult to select them with probabilities of success, adding to the fact that existing information is difficult to find, it is atomized or disordered. Persicaria and Polygonum constitute two of the main representatives of the Polygonaceae family, which have been extensively used in traditional medicine worldwide. Important and structurally diverse bioactive compounds have been isolated from these genera of wild plants; among them, sesquiterpenes and flavonoids should be remarked. In this article, we firstly mention all the species reported with pharmacological use and their geographical distribution. Moreover, a number of tables which summarize an update detailing the type of natural product (extract or isolated compound), applied doses, displayed bioassays and the results obtained for the main bioactivities of these genera cited in the literature during the past 40 years. Antimicrobial, antioxidant, analgesic and anti-inflammatory, antinociceptive, anticancer, antiviral, antiparasitic, anti-diabetic, antipyretic, hepatoprotective, diuretic, gastroprotective and neuropharmacological activities were explored and reviewed in this work, concluding that both genera could be the source for upcoming molecules to treat different human diseases.
Collapse
Affiliation(s)
- Gisela Seimandi
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Norma Álvarez
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Inés Stegmayer
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Laura Fernández
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Verónica Ruiz
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Alejandra Favaro
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Marcos Derita
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| |
Collapse
|
7
|
Liu J, Zeng Y, Sun G, Yu S, Xu Y, He C, Li Z, Jin S, Qin X. Polygonum perfoliatum L., an Excellent Herbal Medicine Widely Used in China: A Review. Front Pharmacol 2020; 11:581266. [PMID: 33304269 PMCID: PMC7701256 DOI: 10.3389/fphar.2020.581266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022] Open
Abstract
Polygonum perfoliatum L. (synonym: Polygonum knotweed L.; Persicaria perfoliata; family: Polygonaceae) is a kind of folk traditional Chinese medicine with a long history of wide use in the treatment of ancient internal, surgical, and gynecological diseases. At present, 80 chemical constituents have been isolated from P. perfoliatum, including flavonoids, anthraquinones, terpenoids, phenolic acids, phenylpropanoids, and alkaloids, among which flavonoids are the main active components. Modern studies have shown that P. perfoliatum has pharmacological activities such as anti-inflammatory, anti-bacterial, antiviral, anti-liver fibrosis, antitussive and expectorant, anti-tumor, anti-oxidation, and so on. By consulting and sorting out a large number of related literatures at home and abroad in recent years, this paper systematically reviewed the botany, traditional uses, phytochemistry, pharmacological activities, and quality control of P. perfoliatum, and discussed its development potential in new drug research and clinical application in the future, in order to provide a reference basis for further research and promote the in-depth development and utilization.
Collapse
Affiliation(s)
- Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojuan Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaopeng Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|