1
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Multi-institutional investigation into the robustness of intra-cranial multi-target stereotactic radiosurgery plans to patient setup errors. Phys Med 2024; 124:103423. [PMID: 38970949 DOI: 10.1016/j.ejmp.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Wyatt JJ, Mohanraj R, Mott JH. Improving the Efficiency of Single-Isocenter Multiple Metastases Stereotactic Radiosurgery Treatment. Adv Radiat Oncol 2024; 9:101538. [PMID: 39081846 PMCID: PMC11286980 DOI: 10.1016/j.adro.2024.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/29/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Multiple brain metastases can be treated efficiently with stereotactic radiosurgery (SRS) using a single-isocenter dynamic conformal arc (SIDCA) technique. Currently, plans are manually optimized, which may lead to unnecessary table angles and arcs being used. This study aimed to evaluate an automatic 4π optimization SIDCA algorithm for treatment efficiency and plan quality. Methods and Materials Automatic 4π-optimized SIDCA plans were created and compared with the manually optimized clinical plans for 54 patients who underwent single-fraction SRS for 2 to 10 metastases. The number of table angles and number of arcs were compared with a paired t test using a Bonferroni-corrected significance level of P < .05/4 = .0125. The reduction in treatment time was estimated from the difference in the number of table angles and arcs. Plan quality was assessed through the volume-averaged inverse Paddick Conformity Index (CI) and Gradient Index (GI) and the volume of normal brain surrounding each metastasis receiving 12 Gy (local V12 Gy). For a 5-patient subset, the automatic plans were manually adjusted further. CI and GI were assessed for noninferiority using a 1-sided t test with the noninferiority limit equal to the 95% interobserver reproducibility limit from a separate planning study (corrected significance level P < .05/[4 - 1] = .017). Results The automatic plans significantly improved treatment efficiency with a mean reduction in the number of table angles and arcs of -0.5 ± 0.1 and -1.3 ± 0.2, respectively (±SE; both P < .001). Estimated treatment time saving was -2.7 ± 0.5 minutes, 14% of the total treatment time. The volume-averaged CI and GI were noninferior to the clinical plans (both P < .001), although there was a small systematic shift in CI of 0.07 ± 0.01. The resulting difference in local V12 Gy, 0.25 ± 0.04 cm3, was not clinically significant. Minor manual adjustment of the automatic plans removed these slight differences while preserving the improved treatment efficiency. Conclusions Automatic 4π optimization can generate SIDCA SRS plans with improved treatment efficiency and noninferior plan quality.
Collapse
Affiliation(s)
- Jonathan J. Wyatt
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Rekha Mohanraj
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Judith H. Mott
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| |
Collapse
|
3
|
Muthu S, Mudhana G. Dosimetric Systems in Pre-Treatment QA for Stereotactic Treatments: Correlation Agreements and Target Volume Dependency. Asian Pac J Cancer Prev 2024; 25:1425-1432. [PMID: 38680004 PMCID: PMC11162722 DOI: 10.31557/apjcp.2024.25.4.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
AIM This study comprehensively investigated pre-treatment quality assurance (QA) for 100 cancer patients undergoing stereotactic treatments (SRS/SRT) using various detectors. METHODS The study conducted QA for SRS/SRT treatments planned with a 6MV SRS beam at a dose rate of 1,000 MU/min, utilizing Eclipse v13.6 Treatment Planning System (TPS). Point dose measurements employed 0.01cm3 and 0.13cm3 cylindrical ionization chambers, while planar dose verification utilized Gafchromic EBT-XD Film and Portal Imager (aS1000). Plans were categorized by target volume, and a thorough analysis compared point dose agreements, planar dose gamma pass rates, and their correlations with chamber volume mean dose, detector type, and point dose agreement. Additionally, the consistency between different ionization chambers was assessed. RESULTS Point dose agreement generally improved with increasing target volume, except for volumes over 10cm3 with 0.01cm3 chambers, showing a contrary trend. Significant differences (p<0.05) were observed between TPS and measured doses for both chambers. Gamma pass rate improved with increasing target volume in EBT XD and aS1000 analyses, except for the >10cm3 group in EBT XD. EBT XD demonstrated better agreement with TPS for target volumes up to 10cm3 compared to aS1000, with a statistically significant difference (p<0.05) between the detectors. Strong correlations were found between chamber point dose and chamber volume mean dose agreement, as well as between the two gamma criteria analyses of the same detector type in the planar dose correlation analysis. However, weak correlations were discovered for other analyses. CONCLUSION This study found weak correlation between different detector types in pre-treatment QA for point dose and planar dose evaluation. However, within a specific detector type, strong correlation was observed for different point dose evaluation methods and gamma criteria. This highlights the importance of cautious interpretation of QA results, particularly for SRS QA, due to the lack of correlation between detector types.
Collapse
Affiliation(s)
- Sivakumar Muthu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai - 600 127, India.
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bangalore - 560 004, India.
| | - Gopinath Mudhana
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai - 600 127, India.
| |
Collapse
|
4
|
Cappelli L, Khan M, Vemula S, Hum C, Liu H, Yu Y, Chen Y, Zhang Y, Sharif M, Shi W. Novel frameless LINAC radiosurgery solution for uveal melanoma. Front Oncol 2024; 14:1365197. [PMID: 38590652 PMCID: PMC10999567 DOI: 10.3389/fonc.2024.1365197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Radiation treatment has replaced enucleation as an organ-preservation treatment for patients with uveal melanoma (UM). We developed a novel non-invasive, frameless LINAC based solution for fractionated stereotactic radiosurgery (fSRS) treatment. Methods We designed and constructed the a stereotactic ocular localization box that can be attached and indexed to a stereotactic LINAC tabletop. It contains adjustable LED lights as a gaze focus point and CCD camera for monitoring of the patient's eye position. The device also has 6 infrared spheres compatible with the ExacTRAC IGRT system. Treatment plans were developed using iPLAN Dose version 4.5, with conformal dynamic arcs and 6MV photon beam in flattening filter free mode, dosed to 50Gy in 5 fractions. During treatment, patients were instructed to stare at the light when a radiation beam is prepared and ready for delivery. Eye movement was tracked throughout treatment. Residual setup errors were recorded for evaluation. Results The stereotactic ocular localization box was 3D-printed with polylactic acid material and attached to the stereotactic LINAC tabletop. 10 patients were treated to evaluate the feasibility, tolerability and setup accuracy. Median treatment time for each arc is 17.3 ± 2.4 seconds (range: 13.8-23.4). After ExacTRAC setup, the residual setup errors are -0.1 ± 0.3 mm laterally, -0.1 ± 0.3 mm longitudinally, and 0 ± 0.2 mm vertically. The residue rotational errors are -0.1 ± 0.3 degree pitch, 0.1 ± 0.2 degree roll, and 0 ± 0.2 degree couch rotation. All patients received treatment successfully. Conclusion We successfully developed a novel non-invasive frameless mask-based LINAC solution for SRS for uveal melanoma, or other ocular tumors. It is well tolerated with high set up accuracy. Future directions for this localization box would include a multi-center trial to assess the efficacy and reproducibility in the fabrication and execution of such a solution for UM therapy.
Collapse
Affiliation(s)
- Louis Cappelli
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehak Khan
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sudheshna Vemula
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christina Hum
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Haisong Liu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yan Yu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yingxuan Chen
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yechi Zhang
- Department Mechanical Engineering, University of New York, City College, New York, NY, United States
| | - Muhammad Sharif
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Giordano G, Griguolo G, Landriscina M, Meattini I, Carbone F, Leone A, Del Re M, Fogli S, Danesi R, Colamaria A, Dieci MV. Multidisciplinary management of HER2-positive breast cancer with brain metastases: An evidence-based pragmatic approach moving from pathophysiology to clinical data. Crit Rev Oncol Hematol 2023; 192:104185. [PMID: 37863404 DOI: 10.1016/j.critrevonc.2023.104185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION About 30-50 % of stage IV HER2+ breast cancers (BC) will present brain metastases (BMs). Their management is based on both local treatment and systemic therapy. Despite therapeutic advances, BMs still impact on survival and quality of life and the development of more effective systemic therapies represents an unmet clinical need. MATERIALS AND METHODS A thorough analysis of the published literature including ongoing clinical trials has been performed, investigating concepts spanning from the pathophysiology of tumor microenvironment to clinical considerations with the aim to summarize the current and future locoregional and systemic strategies. RESULTS Different trials have investigated monotherapies and combination treatments, highlighting how the blood-brain barrier (BBB) represents a major problem hindering diffusion and consequently efficacy of such options. Trastuzumab has long been the mainstay of systemic therapy and over the last two decades other HER2-targeted agents including lapatinib, pertuzumab, and trastuzumab emtansine, as well as more recently neratinib, tucatinib, and trastuzumab deruxtecan, have been introduced in clinical practice after showing promising results in randomized controlled trials. CONCLUSIONS We ultimately propose an evidence-based treatment algorithm for clinicians treating HER2 + BCs patients with BMs.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, Foggia 71122, Italy.
| | - Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova 35128, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, Foggia 71122, Italy
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences M Serio, University of Florence, Florence, Italy, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruher Neurozentrum, Karlsruhe 76133, Germany
| | - Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruher Neurozentrum, Karlsruhe 76133, Germany; Faculty of Human Medicine, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Colamaria
- Division of Neurosurgery, Policlinico Riuniti Foggia, Foggia 71122, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova 35128, Italy
| |
Collapse
|
6
|
Bodensohn R, Maier SH, Belka C, Minniti G, Niyazi M. Stereotactic Radiosurgery of Multiple Brain Metastases: A Review of Treatment Techniques. Cancers (Basel) 2023; 15:5404. [PMID: 38001664 PMCID: PMC10670108 DOI: 10.3390/cancers15225404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The advancement of systemic targeted treatments has led to improvements in the management of metastatic disease, particularly in terms of survival outcomes. However, brain metastases remain less responsive to systemic therapies, underscoring the significance of local interventions for comprehensive disease control. Over the past years, the threshold for treating brain metastases through stereotactic radiosurgery has risen. Yet, as the number of treated metastases increases, treatment complexity and duration also escalate. This trend has made multi-isocenter radiosurgery treatments, such as those with the Gamma Knife, challenging to plan and lengthy for patients. In contrast, single-isocenter approaches employing linear accelerators offer an efficient and expeditious treatment option. This review delves into the literature, comparing different linear-accelerator-based techniques with each other and in relation to dedicated systems, focusing on dosimetric considerations and feasibility.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Sebastian H. Maier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.H.M.); (C.B.)
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.H.M.); (C.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership between DKFZ and LMU University Hospital, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.H.M.); (C.B.)
- German Cancer Consortium (DKTK), Partner Site Tübingen, A Partnership between DKFZ and University Hospital, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Yoon J, Jung H, Tanny SM, Lemus OMD, Milano MT, Hardy SJ, Usuki KY, Zheng D. A comprehensive evaluation of advanced dose calculation algorithms for brain stereotactic radiosurgery. J Appl Clin Med Phys 2023; 24:e14169. [PMID: 37775989 PMCID: PMC10647955 DOI: 10.1002/acm2.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
PURPOSE Accurate dose calculation is important in both target and low dose normal tissue regions for brain stereotactic radiosurgery (SRS). In this study, we aim to evaluate the dosimetric accuracy of the two advanced dose calculation algorithms for brain SRS. METHODS Retrospective clinical case study and phantom study were performed. For the clinical study, 138 SRS patient plans (443 targets) were generated using BrainLab Elements Voxel Monte Carlo (VMC). To evaluate the dose calculation accuracy, the plans were exported into Eclipse and recalculated with Acuros XB (AXB) algorithm with identical beam parameters. The calculated dose at the target center (Dref), dose to 95% target volume (D95), and the average dose to target (Dmean) were compared. Also, the distance from the skull was analyzed. For the phantom study, a cylindrical phantom and a head phantom were used, and the delivered dose was measured by an ion chamber and EBT3 film, respectively, at various locations. The measurement was compared with the calculated doses from VMC and AXB. RESULTS In clinical cases, VMC dose calculations tended to be higher than AXB. It was found that the difference in Dref showed > 5% in some cases for smaller volumes < 0.3 cm3 . Dmean and D95 differences were also higher for small targets. No obvious trend was found between the dose difference and the distance from the skull. In phantom studies, VMC dose was also higher than AXB for smaller targets, and VMC showed better agreement with the measurements than AXB for both point dose and high dose spread. CONCLUSION The two advanced calculation algorithms were extensively compared. For brain SRS, AXB sometimes calculates a noticeable lower target dose for small targets than VMC, and VMC tends to have a slightly closer agreement with measurements than AXB.
Collapse
Affiliation(s)
- Jihyung Yoon
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Hyunuk Jung
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Sean M. Tanny
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Olga Maria Dona Lemus
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Michael T. Milano
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Sara J. Hardy
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Kenneth Y. Usuki
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Dandan Zheng
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
8
|
Faccenda V, Panizza D, Pisoni V, Trivellato S, Daniotti MC, Bianchi SP, De Ponti E, Arcangeli S. Single-Isocenter Linac-Based Radiosurgery for Brain Metastases with Coplanar Arcs: A Dosimetric and Clinical Analysis. Cancers (Basel) 2023; 15:4496. [PMID: 37760466 PMCID: PMC10526167 DOI: 10.3390/cancers15184496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The efficacy of linac-based SRS/fSRS treatments using the single-isocenter coplanar FFF-VMAT technique for both single and multiple BM was investigated. Seventy patients (129 BM) treated with 15-21 Gy in 1 (n = 59) or 27 Gy in 3 (n = 11) fractions were analyzed. For each fraction, plans involving the intra-fractional errors measured by post-treatment CBCT were recalculated. The relationships of BM size, distance-to-isocenter, and barycenter shift with the difference in target coverage were evaluated. Clinical outcomes were assessed using logistic regression and Kaplan-Meier analysis. The median delivery time was 3.78 min (range, 1.83-9.25). The median post-treatment 3D error was 0.5 mm (range, 0.1-2.7) and the maximum rotational error was 0.3° (range, 0.0-1.3). In single BM patients, the GTV D95% was never reduced by >5%, whereas PTV D95% reductions >1% occurred in only 11 cases (29%). In multiple BM patients, dose deficits >5% and >1% occurred in 2 GTV (2%) and 34 PTV (37%), respectively. The differences in target coverage showed a moderate-to-strong correlation only with barycenter shift. Local failure of at least one treated BM occurred in 13 (21%) patients and the 1-year and 2-year local control rates for all lesions were 94% and 90%, respectively. The implemented workflow ensured that the degradation of target and brain dose metrics in delivered treatments was negligible. Along with encouraging clinical outcomes, these findings warrant a reduction in the PTV margins at our institution.
Collapse
Affiliation(s)
- Valeria Faccenda
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (D.P.); (S.T.); (M.C.D.); (E.D.P.)
| | - Denis Panizza
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (D.P.); (S.T.); (M.C.D.); (E.D.P.)
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
| | - Valerio Pisoni
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Sara Trivellato
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (D.P.); (S.T.); (M.C.D.); (E.D.P.)
| | - Martina Camilla Daniotti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (D.P.); (S.T.); (M.C.D.); (E.D.P.)
| | - Sofia Paola Bianchi
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
| | - Elena De Ponti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (D.P.); (S.T.); (M.C.D.); (E.D.P.)
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| |
Collapse
|
9
|
Sağlam Y. A novel weight optimized dynamic conformal arcs with TrueBeam™ Linac for very small tumors (≤1 cc) with single isocenter of multiple brain metastases (2≤, ≥4) in stereotactic radiosurgery: A comparison with volumetric modulated arc therapy. J Cancer Res Ther 2023; 19:1297-1304. [PMID: 37787298 DOI: 10.4103/jcrt.jcrt_1829_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction We evaluated whether improved increase delivery efficiency of weight optimized dynamic conformal arc (WO-DCA) therapy in comparison to volumetric modulated arc therapy (VMAT) with single isocenter for SRS treatment of very small volume and multiple brain metastases (BMs). Materials and Methods 20 patients having a less than 1 cc volume and 2≤, ≥4 of multiple BMs, redesigned for 20 Gy in 1 fraction using WO-DCA and VMAT techniques with double full coplanar and three partial noncoplanar arcs. Plan qualities were compared using tumor coverage, conformity index (CI), gradient index (GI), V4Gy, V10Gy, and V12Gy volumes of brain, monitor units (MUs), and percent of quality assurance pass rate (QA%). Results Both techniques satisfied clinical requirements in coverage and CI. VMAT had a significantly higher MU and mean GI than WO-DCA (for MUs; 2330 vs. 1991; P < 0.001, and for GI; 4.72 vs. 3.39; P < 0.001). WO-DCA was found significantly lower V4Gy (171.11 vs. 232.80 cm3, P < 0.001), V10Gy (25.82 vs. 29.71 cm3, P < 0.05), and V12Gy (14.35 vs. 17.28 cm3, P < 0.05) volumes than VMAT. WO-DCA was associated with markedly increase QA pass rates for all plans (97.65% vs. 92.64%, P < 0.001). Conclusions WO-DCA may be the first choice compared to the VMAT in reducing the dose in the brain and minimizing small-field dosimetric errors for very small SRS treatment of brain metastases in the range of ≤ 1 cc and 2≤, ≥4.
Collapse
Affiliation(s)
- Yücel Sağlam
- Department of Radiation Oncology, School of Medicine, Koc University, Topkapi, Istanbul, Turkey
| |
Collapse
|
10
|
Huang YY, Yang J, Liu YB. Planning issues on linac-based stereotactic radiotherapy. World J Clin Cases 2022; 10:12822-12836. [PMID: 36568990 PMCID: PMC9782937 DOI: 10.12998/wjcc.v10.i35.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy (SRT). The specific techniques include 3-dimensional conformal radiotherapy, dynamic conformal arc therapy, intensity-modulated radiotherapy, and volumetric-modulated arc therapy (VMAT). They are all designed to deliver higher doses to the target volume while reducing damage to normal tissues; among them, VMAT shows better prospects for application. This paper reviews and summarizes several issues on the planning of SRT to provide a reference for clinical application.
Collapse
Affiliation(s)
- Yang-Yang Huang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Jun Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Bao Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
| |
Collapse
|
11
|
Alvarez Aquino A, Ramirez MDJE, Bozkurt I, Asprilla González JA, Goncharov E, Caballero AD, Nurmukhametov R, Montemurro N, Chaurasia B. Treatment of Intracranial Tumors With Stereotactic Radiosurgery: Short-Term Results From Cuba. Cureus 2022; 14:e29955. [PMID: 36348852 PMCID: PMC9635578 DOI: 10.7759/cureus.29955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Background Although international publications on radiosurgery have increased exponentially, reports of heterogeneous series treated with linear accelerator (LINAC) are scarce. Since most intracranial tumors are irregular in size and not spherical, LINACs (Elekta Precise®, Elekta AB, Sweden), fitted with a multi-leaf collimator, allow for precise stereotactic radiosurgery for the entire tumor. Aim To evaluate the effects of LINAC on an outpatient basis with patients diagnosed with various intracranial malignancies. Methodology A retrospective observational study of a series of cases of patients with intracranial lesions treated at the Institute of Oncology and Radiobiology using LINAC was carried out from October 2019 to May 2021 to evaluate the therapeutic results of radiosurgery in patients with intracranial tumors. Results A total of 22 lesions in 20 patients were treated with LINAC. The average age of the patients was 49.7, and the male-female ratio was 1:2. The cases consisted were mostly vestibular schwannoma (7 lesions), metastases from breast cancer (3 lesions), and tuberculum sellae meningioma (2 lesions). The prescription dose covered 99% of the planning target volume in 16 lesions (72.7%) and 100% in six lesions (27.3%) (prescription volume). In meningiomas and schwannomas, doses between 12 and 14 Gy were used, in plasmacytoma 13 Gy, in pilocytic astrocytoma 14 Gy, in cavernoma 15 Gy, in breast cancer metastasis between 18 and 20 Gy, and in lung cancer metastasis 22 Gy. When evaluating local control, 11 patients exhibited stable findings at the six-month control while 10 had partial regression, and a single patient had total regression. Minor complications such as perilesional edema, facial paresthesia, facial paralysis, and transient alopecia were observed in eight of the patients. Conclusions Patients with extra-axial, low-grade malignancy, and posterior fossa lesions were predominant in the studied population. Radiosurgery treatment is associated with good local control of the treated lesions. Complications are infrequent, mild, and predominated by perilesional edema.
Collapse
Affiliation(s)
- Amaya Alvarez Aquino
- Neurosurgery, International Center of Neurological Restoration (CIREN), Havana, CUB
| | | | | | | | - Evgeniy Goncharov
- Traumatology and Orthopedics, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, RUS
| | | | | | - Nicola Montemurro
- Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), Pisa, ITA
| | - Bipin Chaurasia
- Neurosurgery, Bhawani Hospital and Research Center, Birgunj, NPL
| |
Collapse
|
12
|
Asso RN, Mancini A, Palhares DMF, Junior WFPPN, Marta GN, da Silva JLF, Ramos BFG, Gadia R, Hanna SA. Radiosurgery for multiple brain metastases using volumetric modulated arc therapy: a single institutional series. Rep Pract Oncol Radiother 2022; 27:593-601. [PMID: 36196425 PMCID: PMC9521688 DOI: 10.5603/rpor.a2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Patients with brain metastases (BM) live longer due to improved diagnosis and oncologic treatments. The association of volumetric modulated arc therapy (VMAT) and image-guided radiation therapy (IGRT) with brain radiosurgery (SRS) allows complex dose distributions and faster treatment delivery to multiple lesions. Materials and methods This study is a retrospective analysis of SRS for brain metastasis using VMAT. The primary endpoints were local disease-free survival (LDFS) and overall survival (OS). The secondary outcomes were intracranial disease-free survival (IDFS) and meningeal disease-free survival (MDFS). Results The average number of treated lesions was 5.79 (range: 2-20) per treatment in a total of 113 patients. The mean prescribed dose was 18 Gy (range: 12-24 Gy). The median LDFS was 46 months. The LDFS in 6, 12, and 24 months was for 86%, 79%, and 63%, respectively. Moreover, brain progression occurred in 50 patients. The median overall survival was 47 months. The OS in 75%, 69%, and 61% patients was 6, 12, and 24 months, respectively. IDFS was 6 and 24 months in 35% and 14% patients, respectively. The mean MDFS was 62 months; it was 6 and 24 months for 87% and 83% of patients. Acute severe toxicity was relatively rare. During follow-up, the rates of radionecrosis and neurocognitive impairment were low (10%). Conclusion The use of VMAT-SRS for multiple BM was feasible, effective, and associated with low treatment-related toxicity rates. Thus, treatment with VMAT is a safe technique to plan to achieve local control without toxicity.
Collapse
Affiliation(s)
- Rie Nadia Asso
- McGill University Health Centre Glen Site (MUHC), Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Church C, Parsons D, Syme A. Region-of-interest intra-arc MV imaging to facilitate sub-mm positional accuracy with minimal imaging dose during treatment deliveries of small cranial lesions. J Appl Clin Med Phys 2022; 23:e13769. [PMID: 36052995 PMCID: PMC9680576 DOI: 10.1002/acm2.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To automate the generation of region‐of‐interest (ROI) apertures for use with megavoltage imaging for online positional corrections during cranial stereotactic radiosurgery. Materials and methods Digitally reconstructed radiographs (DRRs) were created for a 3D‐printed skull phantom at 5 degree gantry angle increments for a three‐arc beam arrangement. At each angle, 3000 random rectangular apertures were generated, and 100 shifts on a grid were applied to the anatomy within the frame. For all shifts, the mutual information (MI) between the shifted and unshifted DRR was calculated to derive an average MI gradient. The top 10% of apertures that minimized registration errors were overlaid and discretely thresholded to generate imaging plans. Imaging was acquired with the skull while implementing simulated patient motion on a linac. Control point‐specific couch motions were derived to align the skull to its planned positioning. Results Apertures with a range of repositioning errors less than 0.1 mm possessed a 42% larger average MI gradient when compared with apertures with a range greater than 1 mm. Dose calculations with Monte Carlo exhibited an 84% reduction in the dose received by 50% of the skull with the 50% thresholded plan when compared to a constant 22 × 22 cm2 imaging plan. For all different imaging plans (with and without motion), the calculated median 3D‐errors with respect to the tracking of a metal‐BB fiducial positioned at isocenter in the skull were sub‐mm except for the 80% thresholded plan. Conclusions Sub‐mm positional errors are achievable with couch motions derived from control point–specific ROI imaging. Smaller apertures that conform to an anatomical ROI can be utilized to minimize the imaging dose incurred at the expense of larger errors.
Collapse
Affiliation(s)
- Cody Church
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alasdair Syme
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Rydelius A, Lampinen B, Rundcrantz A, Bengzon J, Engelholm S, van Westen D, Kinhult S, Knutsson L, Lätt J, Nilsson M, Sundgren PC. Diffusion tensor imaging in glioblastoma patients treated with volumetric modulated arc radiotherapy: a longitudinal study. Acta Oncol 2022; 61:680-687. [PMID: 35275512 DOI: 10.1080/0284186x.2022.2045036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Chemo- and radiotherapy (RT) is standard treatment for patients with high-grade glioma, but may cause side-effects on the patient's cognitive function. AIM Use of diffusion tensor imaging (DTI) to investigate the longitudinal changes in normal-appearing brain tissue in glioblastoma patients undergoing modern arc-based RT with volumetric modulated arc therapy (VMAT) or helical tomotherapy. MATERIALS AND METHODS The study included 27 patients newly diagnosed with glioblastoma and planned for VMAT or tomotherapy. All subjects underwent magnetic resonance imaging at the start of RT and at week 3, 6, 15, and 26. Fourteen subjects were additionally imaged at week 52. The DTI data were co-registered to the dose distribution maps. Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were assessed in the corpus callosum, the centrum semiovale, the hippocampus, and the amygdala. RESULTS Significant longitudinal changes in FA, MD, and RD were mainly found in the corpus callosum. In the other examined brain structures, only sparse and transient changes were seen. No consistent correlations were found between biodose, age, or gender and changes in DTI parameters. CONCLUSION Longitudinal changes in MD, FA, and RD were observed but only in a limited number of brain structures and the changes were smaller than expected from literature. The results suggest that modern, arc-based RT may have less negative effect on normal-appearing parts of the brain tissue up to 12 months after radiotherapy.
Collapse
Affiliation(s)
- Anna Rydelius
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Björn Lampinen
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Andreas Rundcrantz
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Neurosurgery, Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Silke Engelholm
- Deptarments of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Danielle van Westen
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jimmy Lätt
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Eder MM, Reiner M, Heinz C, Garny S, Freislederer P, Landry G, Niyazi M, Belka C, Riboldi M. Single-isocenter stereotactic radiosurgery for multiple brain metastases: Impact of patient misalignments on target coverage in non-coplanar treatments. Z Med Phys 2022; 32:296-311. [PMID: 35504799 PMCID: PMC9948862 DOI: 10.1016/j.zemedi.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
Frameless single-isocenter non-coplanar stereotactic radiosurgery (SRS) for patients with multiple brain metastases is a treatment at high geometrical complexity. The goal of this study is to analyze the dosimetric impact of non-coplanar image guidance with stereoscopic X-ray imaging. Such an analysis is meant to provide insights on the adequacy of safety margins, and to evaluate the benefit of imaging at non-coplanar configurations. The ExacTrac® (ET) system (Brainlab AG, Munich, Germany) was used for stereoscopic X-ray imaging in frameless single-isocenter non-coplanar SRS for multiple brain metastases. Sub-millimeter precision was found for the ET-based pre-treatment setup, whereas a degradation was noted for non-coplanar treatment angles. Misalignments without intra-fractional positioning corrections were reconstructed in 6 degrees of freedom (DoF) to resemble the situation without non-coplanar image guidance. Dose recalculation in 20 SRS patients with applied positioning corrections did not reveal any significant differences in D98% for 75 planning target volumes (PTVs) and gross tumor volumes (GTVs). For recalculation without applied positioning corrections, significant differences (p<0.05) were reported in D98% for both PTVs and GTVs, with stronger effects for small PTV volumes. A worst-case analysis at increasing translational and rotational misalignment revealed that dosimetric changes are a complex function of the combination thereof. This study highlighted the important role of positioning correction with ET at non-coplanar configurations in frameless single-isocenter non-coplanar SRS for patients with multiple brain metastases. Uncorrected patient misalignments at non-coplanar couch angles were linked to a significant loss of PTV coverage, with effects varying according to the combination of single DoF and PTV geometrical properties.
Collapse
Affiliation(s)
- Michael Martin Eder
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Ludwig-Maximilians University, Garching, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Christian Heinz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Sylvia Garny
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Ludwig-Maximilians University, Garching, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Marco Riboldi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
De Ornelas M, Diwanji T, Monterroso I, Bossart E, Yechieli R, Dogan N, Mellon EA. Assessment of intra-fraction motion during automated linac-based SRS treatment delivery with an open face mask system. Phys Med 2021; 92:69-74. [PMID: 34871889 DOI: 10.1016/j.ejmp.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE/OBJECTIVE To evaluate intra-fraction target shift during automated mono-isocentric linac-based stereotactic radiosurgery with open-face mask system and optical real-time tracking. MATERIALS/METHODS Ninety-five patients were treated using automated linac-based stereotactic radiosurgery in 1-5 fractions with single isocenter for a total of 195 fractions. During treatment, patient positioning was tracked real-time with optical surface guidance and immobilized with a rigid open-face mask. Patients were re-positioned if optical surface guidance error exceeded 1 mm magnitude or 1°. Translational and rotational intra-fractional changes were determined by post-treatment CBCT matched to the planning CT. Target specific error was calculated by translation and rotation matrices applied to isocenter and target spatial coordinates. RESULTS For 132 fractions with isocenter within a single target, the median shift magnitude was 0.40 mm with a maximum shift of 1.17 mm. A total of 398 targets treated for plans having multiple or single targets that lied outside isocenter, resulted in a median shift magnitude of 0.46 mm, with median translational shifts of 0.20 mm and 0.20° rotational shifts. A 1 mm PTV margin was insufficient in 18% of targets at a distance greater than 6 cm away from isocenter, but sufficient for 96% of targets within 6 cm. CONCLUSIONS The findings of this study support 1 mm PTV expansion due to intra-fraction motion to ensure target coverage for plans with isocenter placement less than 6 cm away from the targets.
Collapse
Affiliation(s)
- Mariluz De Ornelas
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Irene Monterroso
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth Bossart
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Raphael Yechieli
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
17
|
Palmiero AN, Fabian D, Randall ME, Clair W, Pokhrel D. Predicting the effect of indirect cell kill in the treatment of multiple brain metastases via single-isocenter/multitarget volumetric modulated arc therapy stereotactic radiosurgery. J Appl Clin Med Phys 2021; 22:94-103. [PMID: 34498359 PMCID: PMC8504608 DOI: 10.1002/acm2.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Due to spatial uncertainty, patient setup errors are of major concern for radiosurgery of multiple brain metastases (m‐bm) when using single‐isocenter/multitarget (SIMT) volumetric modulated arc therapy (VMAT) techniques. However, recent clinical outcome studies show high rates of tumor local control for SIMT‐VMAT. In addition to direct cell kill (DCK), another possible explanation includes the effects of indirect cell kill (ICK) via devascularization for a single dose of 15 Gy or more and by inducing a radiation immune intratumor response. This study quantifies the role of indirect cell death in dosimetric errors as a function of spatial patient setup uncertainty for stereotactic treatments of multiple lesions. Material and Methods Nine complex patients with 61 total tumors (2‐16 tumors/patient) were planned using SIMT‐VMAT with geometry similar to HyperArc with a 10MV‐FFF beam (2400 MU/min). Isocenter was placed at the geometric center of all tumors. Average gross tumor volume (GTV) and planning target volume (PTV) were 1.1 cc (0.02–11.5) and 1.9 cc (0.11–18.8) with an average distance to isocenter of 5.4 cm (2.2–8.9). The prescription was 20 Gy to each PTV. Plans were recalculated with induced clinically observable patient setup errors [±2 mm, ±2o] in all six directions. Boolean structures were generated to calculate the effect of DCK via 20 Gy isodose volume (IDV) and ICK via 15 Gy IDV minus the 20 Gy IDV. Contributions of each IDV to the PTV coverage were analyzed along with normal brain toxicity due to the patient setup uncertainty. Induced uncertainty and minimum dose covering the entire PTV were analyzed to determine the maximum tolerable patient setup errors to utilize the ICK effect for radiosurgery of m‐bm via SIMT‐VMAT. Results Patient setup errors of 1.3 mm /1.3° in all six directions must be maintained to achieve PTV coverage of the 15 Gy IDV for ICK. Setup errors of ±2 mm/2° showed clinically unacceptable loss of PTV coverage of 29.4 ± 14.6% even accounting the ICK effect. However, no clinically significant effect on normal brain dosimetry was observed. Conclusions Radiosurgery of m‐bm using SIMT‐VMAT treatments have shown positive clinical outcomes even with small residual patient setup errors. These clinical outcomes, while largely due to DCK, may also potentially be due to the ICK. Potential mechanisms, such as devascularization and/or radiation‐induced intratumor immune enhancement, should be explored to provide a better understanding of the radiobiological response of stereotactic radiosurgery of m‐bm using a SIMT‐VMAT plan.
Collapse
Affiliation(s)
- Allison N Palmiero
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Denise Fabian
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - William Clair
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Skourou C, Hickey D, Rock L, Houston P, Sturt P, O' Sullivan S, Faul C, Paddick I. Treatment of multiple intracranial metastases in radiation oncology: a contemporary review of available technologies. BJR Open 2021; 3:20210035. [PMID: 34877458 PMCID: PMC8611687 DOI: 10.1259/bjro.20210035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
The use of stereotactic radiosurgery to treat multiple intracranial metastases, frequently concurrently, has become increasingly common. The ability to accurately and safely deliver stereotactic radiosurgery treatment to multiple intracranial metastases (MIM) relies heavily on the technology available for targeting, planning, and delivering the dose. A number of platforms are currently marketed for such applications, each with intrinsic capabilities and limitations. These can be broadly categorised as cobalt-based, linac-based, and robotic. This review describes the most common representative technologies for each type along with their advantages and current limitations as they pertain to the treatment of multiple intracranial metastases. Each technology was used to plan five clinical cases selected to represent the clinical breadth of multiple metastases cases. The reviewers discuss the different strengths and limitations attributed to each technology in the case of MIM as well as the impact of disease-specific characteristics (such as total number of intracranial metastases, their size and relative proximity) on plan and treatment quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clare Faul
- St. Luke’s Radiation Oncology Network, Dublin, Ireland
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
19
|
Yoon JW, Park S, Cheong KH, Kang SK, Han TJ. Combined effect of dose gradient and rotational error on prescribed dose coverage for single isocenter multiple brain metastases in frameless stereotactic radiotherapy. Radiat Oncol 2021; 16:169. [PMID: 34465331 PMCID: PMC8406565 DOI: 10.1186/s13014-021-01893-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the combined effect of rotational error and dose gradient on target dose coverage in frameless stereotactic radiotherapy. METHODS Three spherical targets of different diameters (1, 1.5, and 2 cm) were drawn and placed equidistantly on the same axial brain computed tomography (CT) images. To test the different isocenter-target distances, 2.5- and 5-cm configurations were prepared. Volumetric modulated arc therapy plans were created for different dose gradients from the target, in which the dose gradients were modified using the maximum dose inside the target. To simulate the rotational error, CT images and targets were rotated in two ways by 0.5°, 1°, and 2°, in which one rotation was in the axial plane and the other was in three dimensions. The initial optimized plan parameters were copied to the rotated CT sets, and the doses were recalculated. The coverage degradation after rotation was analyzed according to the target dislocation and 12-Gy volume. RESULTS A shallower dose gradient reduced the loss of target coverage under target dislocation, and the effect was clearer for small targets. For example, the coverage of the 1-cm target under 1-mm dislocation increased from 93 to 95% by increasing the Paddick gradient index from 5.0 to 7.9. At the same time, the widely accepted necrosis indicator, the 12-Gy volume, increased from 1.2 to 3.5 cm3, which remained in the tolerable range. From the differential dose volume histogram (DVH) analysis, the shallower dose gradient ensured that the dose-deficient under-covered target volume received a higher dose similar to that in the prescription. CONCLUSIONS For frameless stereotactic brain radiotherapy, the gradient, alongside the margin addition, can be adjusted as an ancillary parameter for small targets to increase target coverage or at least limit coverage reduction in conditions with probable positioning error.
Collapse
Affiliation(s)
- Jai-Woong Yoon
- Department of Radiation Oncology, Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Soah Park
- Department of Radiation Oncology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kwang-Ho Cheong
- Department of Radiation Oncology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sei-Kwon Kang
- Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| | - Tae Jin Han
- Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Decabooter E, Swinnen AC, Öllers MC, Göpfert F, Verhaegen F. Operation and calibration of the novel PTW 1600SRS detector for the verification of single isocenter stereotactic radiosurgery treatments of multiple small brain metastases. Br J Radiol 2021; 94:20210473. [PMID: 34111967 PMCID: PMC8248213 DOI: 10.1259/bjr.20210473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: The aim of this work was to evaluate the operation of the 1600SRS detector and to develop a calibration procedure for verifying the dose delivered by a single isocenter stereotactic radiosurgery (SRS) treatment of small multiple brain metastases (BM). Methods: 14 clinical treatment cases were selected with the number of BM ranging from 2 to 11. The dosimetric agreement was investigated between the calculated and the measured dose by an OCTAVIUS 1600SRS array detector in an OCTAVIUS 4D phantom equipped with dedicated SRS top. The cross-calibration procedure deviated from the manufacturer’s as it applied field sizes and dose rates corresponding to the volumetric modulated arc therapy segments in each plan. Results: Measurements with a plan specific cross-calibration showed mean ± standard deviation (SD) agreement scores for cut-off values 50%, 80%, 95%, of 98.6 ± 1.7%, 96.5 ± 4.6%, 97.3 ± 4.4% for the 6 MV plans respectively, and 98.6 ± 1.5%, 96.6 ± 4.0% 96.4 ± 6.3%, for the 6 MV flattening filter free (FFF) plans respectively. Using the default calibration procedure instead of the plan specific calibration could lead to a combined systematic dose offset of 4.1% for our treatment plans. Conclusion: The 1600SRS detector array with the 4D phantom offers an accurate solution to perform routine quality assurance measurements of single isocenter SRS treatments of multiple BM. This work points out the necessity of an adapted cross-calibration procedure. Advances in knowledge: A dedicated calibration procedure enables accurate dosimetry with the 1600SRS detector for small field single isocenter SRS treatment of multiple brain metastases for a large amount of BM.
Collapse
Affiliation(s)
- Esther Decabooter
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ans Cc Swinnen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michel C Öllers
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Frank Verhaegen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
21
|
Bodensohn R, Kaempfel AL, Fleischmann DF, Hadi I, Hofmaier J, Garny S, Reiner M, Forbrig R, Corradini S, Thon N, Belka C, Niyazi M. Simultaneous stereotactic radiosurgery of multiple brain metastases using single-isocenter dynamic conformal arc therapy: a prospective monocentric registry trial. Strahlenther Onkol 2021; 197:601-613. [PMID: 33884441 PMCID: PMC8219560 DOI: 10.1007/s00066-021-01773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Single-isocenter dynamic conformal arc (SIDCA) therapy is a technically efficient way of delivering stereotactic radiosurgery (SRS) to multiple metastases simultaneously. This study reports on the safety and feasibility of linear accelerator (LINAC) based SRS with SIDCA for patients with multiple brain metastases. METHODS All patients who received SRS with this technique between November 2017 and June 2019 within a prospective registry trial were included. The patients were irradiated with a dedicated planning tool for multiple brain metastases using a LINAC with a 5 mm multileaf collimator. Follow-up was performed every 3 months, including clinical and radiological examination with cranial magnetic resonance imaging (MRI). These early data were analyzed using descriptive statistics and the Kaplan-Meier method. RESULTS A total of 65 patients with 254 lesions (range 2-12) were included in this analysis. Median beam-on time was 23 min. The median follow-up at the time of analysis was 13 months (95% CI 11.1-14.9). Median overall survival and median intracranial progression-free survival was 15 months (95% CI 7.7-22.3) and 7 months (95% CI 3.9-10.0), respectively. Intracranial and local control after 1 year was 64.6 and 97.5%, respectively. During follow-up, CTCAE grade I adverse effects (AE) were experienced by 29 patients (44.6%; 18 of them therapy related, 27.7%), CTCAE grade II AEs by four patients (6.2%; one of them therapy related, 1.5%), and CTCAE grade III by three patients (4.6%; none of them therapy related). Two lesions (0.8%) in two patients (3.1%) were histopathologically proven to be radiation necrosis. CONCLUSION Simultaneous SRS using SIDCA seems to be a feasible and safe treatment for patients with multiple brain metastases.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Anna-Lena Kaempfel
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Munich, Germany.
| |
Collapse
|
22
|
Rashid A, Ahmad Z, Memon MA, Hashim ASM. Volumetric Modulated Arc Therapy (VMAT): A modern radiotherapy technique - A single institutional experience. Pak J Med Sci 2021; 37:355-361. [PMID: 33679913 PMCID: PMC7931288 DOI: 10.12669/pjms.37.2.2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/12/2020] [Accepted: 11/29/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate VMAT plans for conformity and homogeneity of radiation dose to the target in order to share our experience as a pioneering institute to use VMAT technology in Pakistan. METHODS Since December 2014 to January 2018, 530 patients of various anatomical sites were treated by VMAT technique at Neurospinal Cancer Care Institute (NCCI) Karachi Pakistan. ERGO++ planning system (Version 1.7.2) was used to develop VMAT plans with single or multiple arcs by the rotation of couch and gantry. The plans were evaluated by calculating Conformity Index (CI) and Homogeneity Index (HI) and critical organ (OARs) doses of individual tumor sites. RESULTS The average CI of various sites was 1.4 (range: 1.0-2.0) and average HI of various sites was 1.20 (range: 1.07-1.374), respective critical organ doses were adequately achieved. CONCLUSIONS VMAT treatment planning technique showed good conformal and homogeneous target coverage with sparing of organs at risk and reduced treatment delivery time. With these features, safety of VMAT technique may allow its routine clinical use, though it is still under investigation in many areas.
Collapse
Affiliation(s)
- Azhar Rashid
- Dr. Azhar Rashid, MBBS, FCPS, MSc. Clinical & Radiation Oncologist, Department of Radiation Oncology (Stereotactic Radiosurgery), Neurospinal & Cancer Care Institute (NCCI), M.A Jinnah Road, Saddar, Karachi, Pakistan
| | - Zaeem Ahmad
- Mr. Zaeem Ahmed, MSc Physics Medical Physicist, Department of Radiation Oncology (Stereotactic Radiosurgery), Neurospinal & Cancer Care Institute (NCCI), M.A Jinnah Road, Saddar, Karachi, Pakistan
| | - Muhammad Ali Memon
- Dr. Muhammad Ali Memom, MBBS, FCPS. Clinical & Radiation Oncologist, Department of Radiation Oncology (Stereotactic Radiosurgery), Neurospinal & Cancer Care Institute (NCCI), M.A Jinnah Road, Saddar, Karachi, Pakistan
| | - Abdul Sattar M Hashim
- Dr. Abdul Sattar M Hashim, MBBS, MD, PhD. Chief Neurosurgeon, Department of Stereotactic Radiosurgery/Neurosurgery, Neurospinal & Cancer Care Institute (NCCI), M.A Jinnah Road, Saddar, Karachi, Pakistan
| |
Collapse
|
23
|
Palmiero AN, Fabian D, St Clair W, Randall M, Pokhrel D. Management of multiple brain metastases via dual-isocenter VMAT stereotactic radiosurgery. Med Dosim 2021; 46:240-246. [PMID: 33549397 DOI: 10.1016/j.meddos.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
Single-isocenter volumetric modulated arc therapy (VMAT) stereotactic radiosurgery (SRS) techniques to treat multiple brain metastases simultaneously can significantly improve treatment delivery efficiency, patient compliance, and clinic workflow. However, due to large number of brain metastases sharing the same MLC pair causing island blocking, there is higher low- and intermediate-dose spillage to the normal brain and higher dose to organs-at-risk (OAR). To minimize this problem and improve plan quality, this study proposes a dual-isocenter planning strategy that groups lesions based on hemisphere location (left vs right sided) in the brain parenchyma, providing less island blocking reducing the MLC travel distance. This technique offers simplified planning while also increasing patient comfort and compliance by allowing for large number of brain metastases to be treated in 2 groups. Seven complex patients with 5 to 16 metastases (64 total) were planned with a single-isocenter VMAT-SRS technique using a 10MV-FFF beam with a prescription of 20 Gy to each lesion. The isocenter was placed at the approximate geometric center of the targets. Each patient was replanned using the dual-isocenter approach, generating 2 plans and placing each isocenter at the approximate geometric center of the combined targets of each side with corresponding non-coplanar partial arcs. Compared to single-isocenter VMAT, dual-isocenter VMAT plans provided similar target coverage and dose conformity with less spread of intermediate dose to normal brain with reduction of dose to OAR. Reduction in total monitor units and beam on time was observed, but due to the second isocenter setup and verification, overall treatment time was increased. Dual-isocenter VMAT-SRS planning for multiple brain metastases is a simplified approach that provides superior treatment options for patient compliance who may not tolerate longer traditional treatment times as with individual isocenters to each target. This planning technique significantly reduces the amount of low- and intermediate-dose spillage, further sparing OAR and normal brain, potentially improving target accuracy though localization of left vs right-sided tumors for each isocenter set up.
Collapse
Affiliation(s)
- Allison N Palmiero
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington KY 40536 USA
| | - Denise Fabian
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington KY 40536 USA
| | - William St Clair
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington KY 40536 USA
| | - Marcus Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington KY 40536 USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington KY 40536 USA.
| |
Collapse
|
24
|
Xu MC, Khattab MH, Luo G, Sherry AD, Morales-Paliza M, Chaballout BH, Anderson JL, Attia A, Cmelak AJ. Effects of cone versus multi-leaf collimation on dosimetry and neurotoxicity in patients with small arteriovenous malformations treated by stereotactic radiosurgery. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:287-294. [PMID: 34631230 PMCID: PMC8492055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE/OBJECTIVE Linear accelerator (LINAC) based stereotactic radiosurgery (SRS) for arteriovenous malformations (AVMs) is delivered with cone or multileaf collimators (MLCs), and favorable dosimetry is associated with reduced radionecrosis in normal brain tissue. This study aims to determine whether cones or MLCs has better dosimetric characteristics, to predict differences in toxicity. METHODS All patients treated for AVMs using LINAC SRS from 2003-2017 were examined retrospectively. Demographic data, volumes of normal tissue exposed to 12Gy (V12Gy[cc]) and 4Gy (V4Gy[cc]), maximal dose, and dose gradient were analyzed. Univariate and multivariate analyses were used to evaluate relationships between collimator type, dosimetric parameters, and toxicity. Propensity score matching was used to adjust for AVM size. RESULTS Compared to MLC, cones were independently associated with reduced V12Gy[cc] after propensity score matching (p=0.008) and reduced neurotoxicity (p=0.016). Higher V12Gy[cc] (p=0.0008) and V4Gy[cc] (p=0.002) were associated with increased neurotoxicity. CONCLUSIONS Treating AVMs with cone-based SRS over MLC-based SRS may improve dosimetry and reduce toxicities.
Collapse
Affiliation(s)
- Mark C Xu
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mohamed H Khattab
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guozhen Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Manuel Morales-Paliza
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Basil H. Chaballout
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | | | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anthony J Cmelak
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Kaliyaperumal V, Abraham S, Veni M, Banerjee S, Tamilselvan S, Gupta D, Dayanithi K, Manigandan D, Mishra S, Bisht SS, Kataria T. Dosimetric Comparison of Robotic and Linear Accelerator Multi-Leaf Collimator-Based Stereotactic Radiosurgery for Arteriovenous Malformation. J Med Phys 2021; 46:16-25. [PMID: 34267485 PMCID: PMC8240906 DOI: 10.4103/jmp.jmp_79_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the dosimetric comparison of different collimators which are used in robotic radiosurgery (cyberknife-CK) and linear accelerator (LINAC) for stereotactic radiosurgery (SRS) in arteriovenous malformation (AVM). MATERIALS AND METHODS Twenty-five AVM patients were planned in CK using FIXED cone, IRIS collimator, and multi-leaf collimator (MLC) based in LINAC. Dosimetric comparison was performed using Paddick conformity index (CIPaddick) and International Commission on Radiation Units and measurements (ICRU) homogeneity index (HIICRU), gradient score (GS), normal brain dose received by 10cc (D10cc) and critical structure (brain stem, optic chiasma, optic nerves) doses. Paired sample t-test was used for statistical analysis. RESULTS Mean treatment volume was 3.16cc (standard deviation ± 4.91cc). No significant deviation (P =0.45, 0.237 for FIXED vs. IRIS and FIXED vs. MLC, respectively) was found in target coverage. For CIPaddick, the mean difference (MD) between FIXED- and MLC-based plans was 0.16(P = 0.001); For HIICRU, difference between FIXED and IRIS was insignificant (0.5, P = 0.823); but, when FIXED versus MLC, the deviation was 7.99% (P = 0.002). In FIXED- and MLC-based plans, significant difference was found in GS70 and GS40 (P < 0.041 and 0.005, respectively). MD between FIXED- and MLC-based plans for normal brain for 5Gy, 10Gy, 12Gy, and 20Gy were 36.08cc (P = 0.009), 7.12cc (P = 0.000), 5.84cc (P = 0.000) and 1.56cc (P = 0.000), respectively. AVM volume <0.7cc should be treated with CK FIXED and >0.7cc were treated by using FIXED or IRIS collimators. AVM volume > 1.4cc can be treated by either LINAC MLC-based SRS or CK. CONCLUSION Our study shows CK collimator (IRIS and FIXED) could be able to treat brain AVMs in any size. Linac MLC-based SRS has some limitations in terms of conformity and low-dose spillage, and advantages like reduced treatment time and MU.
Collapse
Affiliation(s)
- Venkatesan Kaliyaperumal
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Susan Abraham
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Maragatha Veni
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Susovan Banerjee
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - S Tamilselvan
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Deepak Gupta
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - K. Dayanithi
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - D. Manigandan
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Saumyaranjan Mishra
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Shyam Singh Bisht
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| |
Collapse
|
26
|
Palmiero AN, Critchfield L, St Clair W, Randall M, Pokhrel D. Single-Isocenter Volumetric Modulated Arc Therapy (VMAT) Radiosurgery for Multiple Brain Metastases: Potential Loss of Target(s) Coverage Due to Isocenter Misalignment. Cureus 2020; 12:e11267. [PMID: 33274143 PMCID: PMC7707911 DOI: 10.7759/cureus.11267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose A single-isocenter volumetric modulated arc therapy (VMAT) treatment to multiple brain metastatic patients is an efficient stereotactic radiosurgery (SRS) option. However, the current clinical practice of single-isocenter SRS does not account for patient setup uncertainty, which degrades treatment delivery accuracy. This study quantifies the loss of target coverage and potential collateral dose to normal tissue due to clinically observable isocenter misalignment. Methods and materials Nine patients with 61 total tumors (2-16 tumors/patient) who underwent Gamma Knife® SRS were replanned in Eclipse™ using 10 megavoltages (MV) flattening-filter-free (FFF) bream (2400 MU/min), using a single-isocenter VMAT plan, similar to HyperArc™ VMAT plan. Isocenter was placed in the geometric center of the tumors. The prescription was 20 Gy to each tumor. Average gross tumor volume (GTV) and planning target volume (PTV) were 1.1 cc (0.02-11.5 cc) and 1.9 cc (0.11-18.8 cc), respectively, derived from MRI images. The average isocenter to tumor distance was 5.5 cm (1.6-10.1 cm). Six-degrees of freedom (6DoF) random and systematic residual set up errors within [±2 mm, ±2o] were generated using an in-house script in Eclipse based on our pre-treatment daily cone-beam CT imaging shifts and recomputed for the simulated VMAT plan. Relative loss of target coverage as a function of tumor size and distance to isocenter were evaluated as well as collateral dose to organs-at risk (OAR). Results The average beam-on time was less than six minutes. However, loss of target coverage for clinically observable setup errors were, on average, 7.9% (up to 73.1%) for the GTV (p < 0.001) and 21.5% for the PTV (up to 93.7%; p < 0.001). The correlation was found for both random and systematic residual setup errors with tumor sizes; there was a greater loss of target coverage for small tumors. Due to isocenter misalignment, OAR doses fluctuated and potentially receive higher doses than the original plan. Conclusion A single-isocenter VMAT SRS treatment (similar to HyperArc™ VMAT) to multiple brain metastases was fast with < 6 min of beam-on time. However, due to small residual set up errors, single-isocenter VMAT, in its current use, is not an accurate SRS treatment modality for multiple brain metastases. Loss of target coverage was statistically significant, especially for smaller lesions, and may not be clinically acceptable if left uncorrected. Further investigation of correction strategies is underway.
Collapse
Affiliation(s)
| | | | | | - Marcus Randall
- Radiation Medicine, University of Kentucky, Lexington, USA
| | | |
Collapse
|
27
|
Xia Y, Adamson J, Zlateva Y, Giles W. Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. JOURNAL OF RADIOSURGERY AND SBRT 2020; 7:135-147. [PMID: 33282467 PMCID: PMC7717087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/25/2020] [Indexed: 06/12/2023]
Abstract
AAPM TG-218 provides recommendations for standard IMRT pre-treatment QA without giving specifics for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). In light of this, our purpose is to report our experience with applying TG-218 recommendations to a large multicenter clinical SRS and SBRT program for a range of diverse clinical pre-treatment QA systems. Pre-treatment QA systems included Delta4 (Scandidos), Portal Dosimetry (Varian Medical Systems), ArcCHECK (SunNuclear), and SRS MapCHECK (SunNuclear). Plans were stratified by technique for each QA system, and included intracranial and extracranial IMRT and VMAT (total QA cases n=275). Gamma analysis was re-analyzed with spatial/dose criteria combinations ranging from 1 to 3 mm and 1% to 4%, and action and tolerance limits were calculated per plan type and compared to the "universal" TG-218 action limit of 90%. The analysis indicated that spatial tolerance criteria could be tightened to 1 mm while still maintaining an in-control QA process for all QA systems evaluated.
Collapse
Affiliation(s)
- Yuqing Xia
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, China 215316
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA
| | - Yana Zlateva
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA
| | - Will Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|