1
|
Luo L, Deng J, Tang Q. A Four-Gene Autophagy-Related Prognostic Model Signature and Its Association With Immune Phenotype in Lung Squamous Cell Carcinoma. Cancer Rep (Hoboken) 2024; 7:e70000. [PMID: 39443755 PMCID: PMC11499073 DOI: 10.1002/cnr2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In the era of immunotherapy, there is a critical need for effective biomarkers to improve outcome prediction and guide treatment decisions for patients with lung squamous cell carcinoma (LUSC). We hypothesized that the immune contexture of LUSC may be influenced by tumor intrinsic events, such as autophagy. AIMS We aimed to develop an autophagy-related risk signature and assess its predictive value for immune phenotype. METHODS AND RESULTS Expression profiles of autophagy-related genes (ARGs) in LUSC samples were obtained from the TCGA and GEO databases. Survival analyses were conducted to identify survival-related ARGs and construct a risk signature using the Random Forest algorithm. Four ARGs (CFLAR, RGS19, PINK1, and CTSD) with the most significant prognostic value were selected to construct the risk signature. Patients in the high-risk group exhibited worse prognosis than those in the low-risk group (p < 0.0001 in TCGA; p < 0.01 in GEO) and the risk score was identified as an independent prognostic factor. We observed that the high-risk group displayed an immune-suppressive status and showed higher levels of infiltrating regulatory T cells and macrophages, which are associated with poorer outcomes. Additionally, the risk score exhibited a significantly positive correlation with the expression of PD-1 and CTLA4, as well as the estimate score and immune score. CONCLUSION This study provided an effective autophagy-related prognostic signature, which could also predict the immune phenotype.
Collapse
Affiliation(s)
- Lumeng Luo
- Department of Radiation OncologyWomen's Hospital, School of Medicine, Zhejiang UniversityZhejiangChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouPeople's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and GynecologyZhejiangChina
| | - Jiaying Deng
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Qiu Tang
- Department of Radiation OncologyWomen's Hospital, School of Medicine, Zhejiang UniversityZhejiangChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouPeople's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and GynecologyZhejiangChina
| |
Collapse
|
2
|
Monette A, Warren S, Barrett JC, Garnett-Benson C, Schalper KA, Taube JM, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J Immunother Cancer 2024; 12:e009427. [PMID: 39032943 PMCID: PMC11261685 DOI: 10.1136/jitc-2024-009427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapies targeting the programmed cell death protein-1/programmed death-ligand 1 (PD-L1) (abbreviated as PD-(L)1) axis are a significant advancement in the treatment of many tumor types. However, many patients receiving these agents fail to respond or have an initial response followed by cancer progression. For these patients, while subsequent immunotherapies that either target a different axis of immune biology or non-immune combination therapies are reasonable treatment options, the lack of predictive biomarkers to follow-on agents is impeding progress in the field. This review summarizes the current knowledge of mechanisms driving resistance to PD-(L)1 therapies, the state of biomarker development along this axis, and inherent challenges in future biomarker development for these immunotherapies. Innovation in the development and application of novel biomarkers and patient selection strategies for PD-(L)1 agents is required to accelerate the delivery of effective treatments to the patients most likely to respond.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | | | | | | | | | - Janis M Taube
- The Mark Foundation Center for Advanced Genomics and Imaging at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
3
|
Veerman RE, Akpinar GG, Offens A, Steiner L, Larssen P, Lundqvist A, Karlsson MCI, Gabrielsson S. Antigen-Loaded Extracellular Vesicles Induce Responsiveness to Anti-PD-1 and Anti-PD-L1 Treatment in a Checkpoint Refractory Melanoma Model. Cancer Immunol Res 2023; 11:217-227. [PMID: 36546872 PMCID: PMC9896027 DOI: 10.1158/2326-6066.cir-22-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EV) are important mediators of intercellular communication and are potential candidates for cancer immunotherapy. Immune checkpoint blockade, specifically targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis, mitigates T-cell exhaustion, but is only effective in a subset of patients with cancer. Reasons for therapy resistance include low primary T-cell activation to cancer antigens, poor antigen presentation, and reduced T-cell infiltration into the tumor. Therefore, combination strategies have been extensively explored. Here, we investigated whether EV therapy could induce susceptibility to anti-PD-1 or anti-PD-L1 therapy in a checkpoint-refractory B16 melanoma model. Injection of dendritic cell-derived EVs, but not checkpoint blockade, induced a potent antigen-specific T-cell response and reduced tumor growth in tumor-bearing mice. Combination therapy of EVs and anti-PD-1 or anti-PD-L1 potentiated immune responses to ovalbumin- and α-galactosylceramide-loaded EVs in the therapeutic model. Moreover, combination therapy resulted in increased survival in a prophylactic tumor model. This demonstrates that EVs can induce potent antitumor immune responses in checkpoint refractory cancer and induce anti-PD-1 or anti-PD-L1 responses in a previously nonresponsive tumor model.
Collapse
Affiliation(s)
- Rosanne E Veerman
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gözde Güclüler Akpinar
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Annemarijn Offens
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Loïc Steiner
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Pia Larssen
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Tsuruta A, Shiiba Y, Matsunaga N, Fujimoto M, Yoshida Y, Koyanagi S, Ohdo S. Diurnal Expression of PD-1 on Tumor-Associated Macrophages Underlies the Dosing Time-Dependent Antitumor Effects of the PD-1/PD-L1 Inhibitor BMS-1 in B16/BL6 Melanoma-Bearing Mice. Mol Cancer Res 2022; 20:972-982. [PMID: 35190830 PMCID: PMC9381128 DOI: 10.1158/1541-7786.mcr-21-0786] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023]
Abstract
Cancer cells have acquired several pathways to escape from host immunity in the tumor microenvironment. Programmed death 1 (PD-1) receptor and its ligand PD-L1 are involved in the key pathway of tumor immune escape, and immune checkpoint therapy targeting PD-1 and PD-L1 has been approved for the treatment of patients with certain types of malignancies. Although PD-1 is a well-characterized receptor on T cells, the immune checkpoint receptor is also expressed on tumor-associated macrophages (TAM), a major immune component of the tumor microenvironment. In this study, we found significant diurnal oscillation in the number of PD-1-expressing TAMs collected from B16/BL6 melanoma-bearing mice. The levels of Pdcd1 mRNA, encoding PD-1, in TAMs also fluctuated in a diurnal manner. Luciferase reporter and bioluminescence imaging analyses revealed that a NF-κB response element in the upstream region of the Pdcd1 gene is responsible for its diurnal expression. A circadian regulatory component, DEC2, whose expression in TAMs exhibited diurnal oscillation, periodically suppressed NF-κB-induced transactivation of the Pdcd1 gene, resulting in diurnal expression of PD-1 in TAMs. Furthermore, the antitumor efficacy of BMS-1, a small molecule inhibitor of PD-1/PD-L1, was enhanced by administering it at the time of day when PD-1 expression increased on TAMs. These findings suggest that identification of the diurnal expression of PD-1 on TAMs is useful for selecting the most appropriate time of day to administer PD-1/PD-L1 inhibitors. IMPLICATIONS Selecting the most appropriate dosing time of PD-1/PD-L1 inhibitors may aid in developing cancer immunotherapy with higher efficacy.
Collapse
Affiliation(s)
- Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Yuki Shiiba
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Marina Fujimoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Yoshida
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Corresponding Author: Shigehiro Ohdo, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8512, Japan. E-mail:
| |
Collapse
|
5
|
Ketogenic diet inhibits tumor growth by enhancing immune response, attenuating immunosuppression, inhibiting angiogenesis and EMT in CT26 colon tumor allografts mouse model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing. Nat Commun 2022; 13:1804. [PMID: 35379808 PMCID: PMC8980030 DOI: 10.1038/s41467-022-29412-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an inherently immune cell deprived tumor, characterized by desmoplastic stroma and suppressive immune cells. Here we systematically dissect PDA intrinsic mechanisms of immune evasion by in vitro and in vivo CRISPR screening, and identify Vps4b and Rnf31 as essential factors required for escaping CD8+ T cell killing. For Vps4b we find that inactivation impairs autophagy, resulting in increased accumulation of CD8+ T cell-derived granzyme B and subsequent tumor cell lysis. For Rnf31 we demonstrate that it protects tumor cells from TNF-mediated caspase 8 cleavage and subsequent apoptosis induction, a mechanism that is conserved in human PDA organoids. Orthotopic transplantation of Vps4b- or Rnf31 deficient pancreatic tumors into immune competent mice, moreover, reveals increased CD8+ T cell infiltration and effector function, and markedly reduced tumor growth. Our work uncovers vulnerabilities in PDA that might be exploited to render these tumors more susceptible to the immune system. Pancreatic cancer is characterized by an immunosuppressive microenvironment, leading to immune evasion. Here, based on in vitro and in vivo CRISPR screens, the authors identify Rnf31 and Vps4b as drivers of immune escape, showing that loss of their function leads to an increase in T cell-mediated killing and reduced tumor growth in preclinical pancreatic cancer models.
Collapse
|
7
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
8
|
Wan Z, Sun R, Liu YW, Li S, Sun J, Li J, Zhu J, Moharil P, Zhang B, Ren P, Ren G, Zhang M, Ma X, Dai S, Yang D, Lu B, Li S. Targeting metabotropic glutamate receptor 4 for cancer immunotherapy. SCIENCE ADVANCES 2021; 7:eabj4226. [PMID: 34890233 PMCID: PMC8664261 DOI: 10.1126/sciadv.abj4226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 05/30/2023]
Abstract
In this study, we report a novel role of metabotropic glutamate receptor 4 (GRM4) in suppressing antitumor immunity. We revealed in three murine syngeneic tumor models (B16, MC38, and 3LL) that either genetic knockout (Grm4−/−) or pharmacological inhibition led to significant delay in tumor growth. Mechanistically, perturbation of GRM4 resulted in a strong antitumor immunity by promoting natural killer (NK), CD4+, and CD8+ T cells toward an activated, proliferative, and functional phenotype. Single-cell RNA sequencing and T cell receptor profiling further defined the clonal expansion and immune landscape changes in CD8+ T cells. We further showed that Grm4−/− intrinsically activated interferon-γ production in CD8+ T cells through cyclic adenosine 3′,5′-monophosphate (cAMP)/cAMP response element binding protein–mediated pathway. Our study appears to be of clinical significance as a signature of NKhigh-GRM4low and CD8high-GRM4low correlated with improved survival in patients with melanoma. Targeting GRM4 represents a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yang-Wuyue Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guolian Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuangshuang Dai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Maiese A, De Matteis A, Bolino G, Turillazzi E, Frati P, Fineschi V. Hypo-Expression of Flice-Inhibitory Protein and Activation of the Caspase-8 Apoptotic Pathways in the Death-Inducing Signaling Complex Due to Ischemia Induced by the Compression of the Asphyxiogenic Tool on the Skin in Hanging Cases. Diagnostics (Basel) 2020; 10:diagnostics10110938. [PMID: 33198065 PMCID: PMC7696535 DOI: 10.3390/diagnostics10110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The FLICE-inhibitory protein (c-FLIPL) (55 kDa) is expressed in numerous tissues and most abundantly in the kidney, skeletal muscles and heart. The c-FLIPL has a region of homology with caspase-8 at the carboxy-terminal end which allows the molecule to assume a tertiary structure similar to that of caspases-8 and -10. Consequently, c-FLIPL acts as a negative inhibitor of caspase-8, preventing the processing and subsequent release of the pro-apoptotic molecule active form. The c-FLIP plays as an inhibitor of apoptosis induced by a variety of agents, such as tumor necrosis factor (TNF), T cell receptor (TCR), TNF-related apoptosis inducing ligand (TRAIL), Fas and death receptor (DR). Increased expression of c-FLIP has been found in many human malignancies and shown to be involved in resistance to CD95/Fas and TRAIL receptor-induced apoptosis. We wanted to verify an investigative protocol using FLIP to make a differential diagnosis between skin sulcus with vitality or non-vital skin sulcus in hanged subjects and those undergoing simulated hanging (suspension of the victim after murder). The study group consisted of 21 cases who died from suicidal hanging. The control group consisted of traumatic or natural deaths, while a third group consisted of simulated hanging cases. The reactions to the Anti-FLIP Antibody (Abcam clone-8421) was scored for each section with a semi-quantitative method by means of microscopic observation carried out with confocal microscopy and three-dimensional reconstruction. The results obtained allow us to state that the skin reaction to the FLIP is extremely clear and precise, allowing a diagnosis of unequivocal vitality and a very objective differentiation with the post-mortal skin sulcus.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Giorgio Bolino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
| | - Paola Frati
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Vittorio Fineschi
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
10
|
Mehdi A, Attias M, Mahmood N, Arakelian A, Mihalcioiu C, Piccirillo CA, Szyf M, Rabbani SA. Enhanced Anticancer Effect of a Combination of S-adenosylmethionine (SAM) and Immune Checkpoint Inhibitor (ICPi) in a Syngeneic Mouse Model of Advanced Melanoma. Front Oncol 2020; 10:1361. [PMID: 32983966 PMCID: PMC7492272 DOI: 10.3389/fonc.2020.01361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICPi) targeting the PD-1/PD-L1 pathway have shown marked success in patients with advanced melanoma. However, 60-70% of patients fail to respond, warranting a therapeutic intervention that could increase response rates. We and others have shown that S-adenosylmethionine (SAM), a universal methyl donor, has significant anticancer effects in numerous cancers previously; however, its effect on melanoma progression has not been evaluated. Interestingly, SAM was reported to be essential for T cell activation and proliferation and, thus, could potentially cooperate with ICPi and block melanoma progression. In this study, we examined the antitumor effects of SAM and ICPi alone and in combination in a well-established melanoma mouse model wherein syngeneic C57BL/6 mouse were subcutaneously (orthotopic) injected with B16-F1 cells. Treatment of mice with either SAM or anti-PD-1 antibody alone resulted in significant reduction in tumor volumes and weights; effects that were highest in mice treated with a combination of SAM+anti-PD-1. RNA-sequencing analysis of the primary tumors showed numerous differentially expressed genes (DEGs) following treatment with SAM+anti-PD-1, which was shown to downregulate cancer, MAPK, and tyrosine kinase pathways. Indeed, SAM+anti-PD-1 reversed the aberrant expression of some known melanoma genes. Tumor immunophenotyping revealed the SAM+anti-PD-1 combination was significantly more effective than either SAM or anti-PD-1 as the CD8+ T cells had higher activation, proliferation, and cytokine production compared to all other groups. This study shows that the combination of currently approved agents SAM and ICPi can effectively block melanoma via alteration of key genes/pathways implicated in cancer and immune response pathways, providing the rationale for the initiation of clinical trials with SAM and ICPi.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Medicine, McGill University, Montreal, QC, Canada.,Human Genetics, McGill University, Montreal, QC, Canada.,Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mikhael Attias
- Department of Medicine, McGill University, Montreal, QC, Canada.,Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Niaz Mahmood
- Department of Medicine, McGill University, Montreal, QC, Canada.,Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montreal, QC, Canada.,Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Ciriaco A Piccirillo
- Department of Medicine, McGill University, Montreal, QC, Canada.,Microbiology & Immunology, McGill University, Montreal, QC, Canada.,Experimental Medicine, McGill University, Montreal, QC, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology, McGill University, Montreal, QC, Canada
| | - Shafaat Ahmed Rabbani
- Department of Medicine, McGill University, Montreal, QC, Canada.,Human Genetics, McGill University, Montreal, QC, Canada.,Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|