1
|
wu Z, Xu Y, Zhou C, Zhang Y, Chen J. tsRNA in head and neck tumors: Opportunities and challenges in the field. Noncoding RNA Res 2025; 10:223-230. [PMID: 39468996 PMCID: PMC11513501 DOI: 10.1016/j.ncrna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly recognized class of small non-coding RNAs that are implicated in a variety of cancers, including head and neck tumors. Studies have identified tsRNAs with differential expression profiles in head and neck malignancies, highlighting their potential as biomarkers for diagnosis and prognosis. Functional analyses show that tsRNAs are involved in regulating critical cellular pathways, including those related to cell proliferation, migration, and metabolic processes. Despite these encouraging insights, there are myriad challenges that must be tackled. In summary, tsRNAs present considerable potential as therapeutic targets and biomarkers in the realm of head and neck tumors, meriting further investigation and clinical application to optimize outcomes in the management of these complex diseases. This literature review synthesizes current research on tsRNAs, tsRNAs hold significant promise as biomarkers and therapeutic targets, with the potential to transform diagnostic and treatment strategies for head and neck tumors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yufeng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| | - Changzeng Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yongbo Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| |
Collapse
|
2
|
Hasan MN, Rahman MM, Husna AA, Nozaki N, Yamato O, Miura N. YRNA and tRNA fragments can differentiate benign from malignant canine mammary gland tumors. Biochem Biophys Res Commun 2024; 691:149336. [PMID: 38039834 DOI: 10.1016/j.bbrc.2023.149336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Mammary gland tumors (MGT) are the most common tumors in sexually intact female dogs. The functional regulation of miRNAs, a type of noncoding RNAs (ncRNAs), in canine MGT has been extensively investigated. However, the expression of other ncRNAs, such as YRNAs and transfer RNA-derived fragments (tRFs) in canine MGT is unknown. We investigated ncRNAs other than miRNAs from our small RNA project (PRJNA716131) in different canine MGT histologic subtypes. This study included benign tumors (benign mixed tumor, complex adenoma) and malignant tumors (carcinoma in benign tumor and carcinoma with metastasis) samples. Aberrantly expressed ncRNAs were examined by comparisons among MGT subtypes. The relative expression trends were validated in canine MGT tissues, plasma, extracellular vesicles, and MGT cell lines using quantitative reverse transcription PCR. Three aberrantly expressed ncRNAs were identified by comparisons among MGT subtypes. YRNA and tRNA-Gly-GCC distinguished benign mixed tumor from other MGT histologic subtypes, while tRNA-Val differentiated complex adenoma, carcinoma in benign tumors, and carcinoma with metastasis. The ROC curve of the three ncRNAs showed they might be potential biomarkers to discriminate malignant from benign MGT. YRNA and tRFs expression levels were decreased in metastatic compared with primary canine MGT cell lines. To the best of our knowledge, this is the first investigation of YRNA and tRFs in canine MGT. The three identified ncRNAs may be biomarkers for differentiating MGT histologic subtypes. Suggested Reviewers: Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporatio.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan; Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| | - Md Mahfuzur Rahman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| | - Nobuhiro Nozaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| | - Osamu Yamato
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan; Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan; Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
3
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Midsize noncoding RNAs in cancers: a new division that clarifies the world of noncoding RNA or an unnecessary chaos? Rep Pract Oncol Radiother 2022; 27:1077-1093. [PMID: 36632289 PMCID: PMC9826665 DOI: 10.5603/rpor.a2022.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022] Open
Abstract
Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the "magic" border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50-400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world?
Collapse
|
5
|
Alsop E, Meechoovet B, Kitchen R, Sweeney T, Beach TG, Serrano GE, Hutchins E, Ghiran I, Reiman R, Syring M, Hsieh M, Courtright-Lim A, Valkov N, Whitsett TG, Rakela J, Pockros P, Rozowsky J, Gallego J, Huentelman MJ, Shah R, Nakaji P, Kalani MYS, Laurent L, Das S, Van Keuren-Jensen K. A Novel Tissue Atlas and Online Tool for the Interrogation of Small RNA Expression in Human Tissues and Biofluids. Front Cell Dev Biol 2022; 10:804164. [PMID: 35317387 PMCID: PMC8934391 DOI: 10.3389/fcell.2022.804164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.
Collapse
Affiliation(s)
- Eric Alsop
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Bessie Meechoovet
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thadryan Sweeney
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Rebecca Reiman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Syring
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Hsieh
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Amanda Courtright-Lim
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Timothy G. Whitsett
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | | | - Paul Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, United States
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Juan Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health, Phoenix, AZ, United States
| | - M. Yashar S. Kalani
- Department of Neurosurgery, St. John Medical Center, Tulsa, OK, United States
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, San Diego, CA, United States
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
6
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
7
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
8
|
Dhahbi JM, Chen JW, Bhupathy S, Atamna H, Cavalcante MB, Saccon TD, Nunes ADC, Mason JB, Schneider A, Masternak MM. Specific PIWI-Interacting RNAs and Related Small Noncoding RNAs Are Associated With Ovarian Aging in Ames Dwarf (df/df) Mice. J Gerontol A Biol Sci Med Sci 2021; 76:1561-1570. [PMID: 34387333 PMCID: PMC8361361 DOI: 10.1093/gerona/glab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Joe W Chen
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Supriya Bhupathy
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | | | - Tatiana D Saccon
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poland
| |
Collapse
|
9
|
Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5'-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:222. [PMID: 34225773 PMCID: PMC8256553 DOI: 10.1186/s13046-021-02024-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/18/2021] [Indexed: 11/10/2022]
Abstract
Background tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. Methods Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. Results Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. Conclusions Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02024-3.
Collapse
Affiliation(s)
- Litao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hejing Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhe Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China.
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Salloum-Asfar S, Elsayed AK, Elhag SF, Abdulla SA. Circulating Non-Coding RNAs as a Signature of Autism Spectrum Disorder Symptomatology. Int J Mol Sci 2021; 22:ijms22126549. [PMID: 34207213 PMCID: PMC8235321 DOI: 10.3390/ijms22126549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder that becomes apparent during early childhood development. The complexity of ASD makes clinically diagnosing the condition difficult. Consequently, by identifying the biomarkers associated with ASD severity and combining them with clinical diagnosis, one may better factionalize within the spectrum and devise more targeted therapeutic strategies. Currently, there are no reliable biomarkers that can be used for precise ASD diagnosis. Consequently, our pilot experimental cohort was subdivided into three groups: healthy controls, individuals those that express severe symptoms of ASD, and individuals that exhibit mild symptoms of ASD. Using next-generation sequencing, we were able to identify several circulating non-coding RNAs (cir-ncRNAs) in plasma. To the best of our knowledge, this study is the first to show that miRNAs, piRNAs, snoRNAs, Y-RNAs, tRNAs, and lncRNAs are stably expressed in plasma. Our data identify cir-ncRNAs that are specific to ASD. Furthermore, several of the identified cir-ncRNAs were explicitly associated with either the severe or mild groups. Hence, our findings suggest that cir-ncRNAs have the potential to be utilized as objective diagnostic biomarkers and clinical targets.
Collapse
|
11
|
Chen W, Li L, Wang J, Li Q, Zhang R, Wang S, Wu Y, Xing D. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta 2021; 517:15-22. [DOI: 10.1016/j.cca.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
|
12
|
Diez-Fraile A, Ceulaer JD, Derpoorter C, Spaas C, Backer TD, Lamoral P, Abeloos J, Lammens T. Circulating Non-Coding RNAs in Head and Neck Cancer: Roles in Diagnosis, Prognosis, and Therapy Monitoring. Cells 2020; 10:cells10010048. [PMID: 33396240 PMCID: PMC7823329 DOI: 10.3390/cells10010048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC), the seventh most common form of cancer worldwide, is a group of epithelial malignancies affecting sites in the upper aerodigestive tract. The 5-year overall survival for patients with HNC has stayed around 40–50% for decades, with mortality being attributable mainly to late diagnosis and recurrence. Recently, non-coding RNAs, including tRNA halves, YRNA fragments, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), have been identified in the blood and saliva of patients diagnosed with HNC. These observations have recently fueled the study of their potential use in early detection, diagnosis, and risk assessment. The present review focuses on recent insights and the potential impact that circulating non-coding RNA evaluation may have on clinical decision-making in the management of HNC.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Joke De Ceulaer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
| | - Christophe Spaas
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tom De Backer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Philippe Lamoral
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Johan Abeloos
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-2480
| |
Collapse
|
13
|
Ding L, Jiang M, Wang R, Shen D, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. The emerging role of small non-coding RNA in renal cell carcinoma. Transl Oncol 2020; 14:100974. [PMID: 33395751 PMCID: PMC7719974 DOI: 10.1016/j.tranon.2020.100974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
SncRNAs contribute to the progress of renal cell carcinoma. SncRNAs are promising biomarkers for diagnosis and prognosis of renal cell carcinoma. Despite the potential of sncRNA-based cancer therapy, some obstacles remain, including several severe adverse effect.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
14
|
Gu X, Wang L, Coates PJ, Boldrup L, Fåhraeus R, Wilms T, Sgaramella N, Nylander K. Transfer-RNA-Derived Fragments Are Potential Prognostic Factors in Patients with Squamous Cell Carcinoma of the Head and Neck. Genes (Basel) 2020; 11:genes11111344. [PMID: 33202812 PMCID: PMC7698123 DOI: 10.3390/genes11111344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Transfer-RNA-derived fragments (tRFs) are a class of small non-coding RNAs that are functionally different from their parental transfer RNAs (tRNAs). tRFs can regulate gene expression by several mechanisms, and are involved in a variety of pathological processes. Here, we aimed at understanding the composition and abundance of tRFs in squamous cell carcinoma of the head and neck (SCCHN), and evaluated the potential of tRFs as prognostic markers in this cancer type. We obtained tRF expression data from The Cancer Genome Atlas (TCGA) HNSC cohort (523 patients) using MINTbase v2.0, and correlated to available TCGA clinical data. RNA-binding proteins were predicted according to the calculated Position Weight Matrix (PWM) score from the RNA-Binding Protein DataBase (RBPDB). A total of 10,158 tRFs were retrieved and a high diversity in expression levels was seen. Fifteen tRFs were found to be significantly associated with overall survival (Kaplan-Meier survival analysis, log rank test p-value < 0.01). The top prognostic marker, tRF-20-S998LO9D (p < 0.001), was further measured in tumor and tumor-free samples from 16 patients with squamous cell carcinoma of the oral tongue and 12 healthy controls, and was significantly upregulated in tumor compared to matched tumor-free tongue (p < 0.001). Results suggest that tRFs are useful prognostic markers in SCCHN.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
- Correspondence: ; Tel.: +46-(0)-702-086-036
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Philip J. Coates
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Robin Fåhraeus
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
- Institute of Molecular Genetics, University Paris 7, St. Louis Hospital, 75010 Paris, France
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, 90185 Umeå, Sweden;
| | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| |
Collapse
|
15
|
Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application. Int J Mol Sci 2020; 21:ijms21186827. [PMID: 32957662 PMCID: PMC7555669 DOI: 10.3390/ijms21186827] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy recently became a very promising diagnostic method that has several advantages over conventional invasive methods. Liquid biopsy may serve as a source of several important biomarkers including cell-free nucleic acids (cf-NAs). Cf-DNA is widely used in prenatal testing in order to characterize fetal genetic disorders. Analysis of cf-DNA may provide information about the mutation profile of tumor cells, while cell-free non-coding RNAs are promising biomarker candidates in the diagnosis and prognosis of cancer. Many of these markers have the potential to help clinicians in therapy selection and in the follow-up of patients. Thus, cf-NA-based diagnostics represent a new path in personalized medicine. Although several reviews are available in the field, most of them focus on a limited number of cf-NA types. In this review, we give an overview about all known cf-NAs including cf-DNA, cf-mtDNA and cell-free non-coding RNA (miRNA, lncRNA, circRNA, piRNA, YRNA, and vtRNA) by discussing their biogenesis, biological function and potential as biomarker candidates in liquid biopsy. We also outline possible future directions in the field.
Collapse
|
16
|
Jia Y, Tan W, Zhou Y. Transfer RNA-derived small RNAs: potential applications as novel biomarkers for disease diagnosis and prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1092. [PMID: 33145311 PMCID: PMC7575943 DOI: 10.21037/atm-20-2797] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transfer RNA-derived small RNA (tsRNA)s are novel non-coding RNAs, expressed in a variety of tissues and organs. Two subtypes of tsRNAs have been reported: tRNA-derived stress-induced RNA (tiRNA)s and tRNA-derived fragment (tRF)s. tsRNAs have been reported to play essential roles and possess different biological functions in a variety of physiological activities. Recently, tsRNAs have been implicated in a large number of diseases, such as cancers (including breast cancer, ovarian cancer, lung cancer, prostate cancer, colorectal cancer, etc.), neurological disorders, viral infections, metabolic diseases and angiogenesis-related diseases. Although the biological functions of tsRNAs are still poorly understood, correlations between dysregulated tsRNA expression and disease development have been recently reported. Additionally, their capabilities as potential biomarkers for disease diagnosis and prognosis have been revealed in clinical studies. In this review, we summarize the current knowledge of tsRNAs, and discuss their potential clinical applications as biomarkers in different diseases. Although the regulation of tsRNAs is similar to miRNAs in regards to the related physiological and pathological processes, the higher stability and expression levels of tsRNAs place them as ideal biomarkers for the diagnosis and prognosis in cancer and other diseases. Therefore, it is worth to verify the possibility and reliability of these reported tsRNAs as potential biomarkers for clinical applications in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
17
|
Zimta AA, Sigurjonsson OE, Gulei D, Tomuleasa C. The Malignant Role of Exosomes as Nanocarriers of Rare RNA Species. Int J Mol Sci 2020; 21:ijms21165866. [PMID: 32824183 PMCID: PMC7461500 DOI: 10.3390/ijms21165866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, advancements in the oncology sector regarding diagnosis methods allow us to specifically detect an increased number of cancer patients, some of them in incipient stages. However, one of the main issues consists of the invasive character of most of the diagnosis protocols or complex medical procedures associated with it, that impedes part of the patients to undergo routine checkups. Therefore, in order to increase the number of cancer cases diagnosed in incipient stages, other minimally invasive alternatives must be considered. The current review paper presents the value of rare RNA species isolated from circulatory exosomes as biomarkers of diagnosis, prognosis or even therapeutic intervention. Rare RNAs are most of the time overlooked in current research in favor of the more abundant RNA species like microRNAs. However, their high degree of stability, low variability and, for most of them, conservation across species could shift the interest toward these types of RNAs. Moreover, due to their low abundance, the variation interval in terms of the number of sequences with differential expression between samples from healthy individuals and cancer patients is significantly diminished and probably easier to interpret in a clinical context.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali University Hospital, 121 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 107 Reykjavik, Iceland
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Correspondence: or
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iga Kołodziejczak
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
19
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|