1
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
2
|
Kyr M, Mudry P, Polaskova K, Dubska LZ, Demlova R, Kubatova J, Hlavackova E, Pilatova KC, Mazanek P, Vejmelkova K, Dusek V, Tinka P, Balaz M, Merta T, Kuttnerova Z, Turekova T, Pavelka Z, Pokorna P, Palova H, Mlnarikova M, Jezova M, Kellnerova R, Kozakova S, Slaby O, Valik D, Sterba J. Personalized dendritic cell vaccine in multimodal individualized combination therapy improves survival in high-risk pediatric cancer patients. Int J Cancer 2024; 155:1443-1454. [PMID: 38958237 DOI: 10.1002/ijc.35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 07/04/2024]
Abstract
A lot of hope for high-risk cancers is being pinned on immunotherapy but the evidence in children is lacking due to the rarity and limited efficacy of single-agent approaches. Here, we aim to assess the effectiveness of multimodal therapy comprising a personalized dendritic cell (DC) vaccine in children with relapsed and/or high-risk solid tumors using the N-of-1 approach in real-world scenario. A total of 160 evaluable events occurred in 48 patients during the 4-year follow-up. Overall survival of the cohort was 7.03 years. Disease control after vaccination was achieved in 53.8% patients. Comparative survival analysis showed the beneficial effect of DC vaccine beyond 2 years from initial diagnosis (HR = 0.53, P = .048) or in patients with disease control (HR = 0.16, P = .00053). A trend for synergistic effect with metronomic cyclophosphamide and/or vinblastine was indicated (HR = 0.60 P = .225). A strong synergistic effect was found for immune check-point inhibitors (ICIs) after priming with the DC vaccine (HR = 0.40, P = .0047). In conclusion, the personalized DC vaccine was an effective component in the multimodal individualized treatment. Personalized DC vaccine was effective in less burdened or more indolent diseases with a favorable safety profile and synergized with metronomic and/or immunomodulating agents.
Collapse
Affiliation(s)
- Michal Kyr
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristyna Polaskova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Zdrazilova Dubska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kubatova
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Cerna Pilatova
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Mazanek
- Department of Pediatric Hematology and Biochemistry, Children's University Hospital Brno, Brno, Czech Republic
| | - Klara Vejmelkova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Vitezslav Dusek
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Tinka
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Martin Balaz
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Merta
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Kuttnerova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Terezia Turekova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pokorna
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Palova
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mlnarikova
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Renata Kellnerova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Kozakova
- Department of Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Ondrej Slaby
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dalibor Valik
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Advanced Therapy and Immunotherapy Centre (CREATIC), Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
4
|
Chen Y, Zhao C, Li S, Wang J, Zhang H. Immune Microenvironment and Immunotherapies for Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15030602. [PMID: 36765560 PMCID: PMC9913210 DOI: 10.3390/cancers15030602] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary glial glioma that occurs in all age groups but predominates in children and is the main cause of solid tumor-related childhood mortality. Due to its rapid progression, the inability to operate and insensitivity to most chemotherapies, there is a lack of effective treatment methods in clinical practice for DIPG patients. The prognosis of DIPG patients is extremely poor, with a median survival time of no more than 12 months. In recent years, there have been continuous breakthroughs for immunotherapies in various hematological tumors and malignant solid tumors with extremely poor prognoses, which provides new insights into tumors without effective treatment strategies. Meanwhile, with the gradual development of stereotactic biopsy techniques, it is gradually becoming easier and safer to obtain live DIPG tissue, and the understanding of the immune properties of DIPG has also increased. On this basis, a series of immunotherapy studies of DIPG are under way, some of which have shown encouraging results. Herein, we review the current understanding of the immune characteristics of DIPG and critically reveal the limitations of current immune research, as well as the opportunities and challenges for immunological therapies in DIPG, hoping to clarify the development of novel immunotherapies for DIPG treatment.
Collapse
|
5
|
Pilavaki P, Panagi M, Arifi S, Jones RL, Stylianopoulos T, Constantinidou A. Exploring the landscape of immunotherapy approaches in sarcomas. Front Oncol 2023; 12:1069963. [PMID: 36686827 PMCID: PMC9853527 DOI: 10.3389/fonc.2022.1069963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sarcomas comprise a heterogenous group of malignancies, of more than 100 different entities, arising from mesenchymal tissue, and accounting for 1% of adult malignancies. Surgery, radiotherapy and systemic therapy constitute the therapeutic armamentarium against sarcomas, with surgical excision and conventional chemotherapy, remaining the mainstay of treatment for local and advanced disease, respectively. The prognosis for patients with metastatic disease is dismal and novel therapeutic approaches are urgently required to improve survival outcomes. Immunotherapy, is a rapidly evolving field in oncology, which has been successfully applied in multiple cancers to date. Immunomodulating antibodies, adoptive cellular therapy, cancer vaccines, and cytokines have been tested in patients with different types of sarcomas through clinical trials, pilot studies, retrospective and prospective studies. The results of these studies regarding the efficacy of different types of immunotherapies in sarcomas are conflicting, and the application of immunotherapy in daily clinical practice remains limited. Additional clinical studies are ongoing in an effort to delineate the role of immunotherapy in patients with specific sarcoma subtypes.
Collapse
Affiliation(s)
- Pampina Pilavaki
- Medical School, University of Cyprus, Nicosia, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering University of Cyprus, Nicosia, Cyprus
| | - Samia Arifi
- Medical Oncology Department, Hassan II University Hospital/Faculty of Medicine and Pharmacy University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Robin L. Jones
- Sarcoma Unit, Royal Marsden National Health Service (NHS) Foundation Trust, London, London, United Kingdom
- Sarcoma Clinical Trial Unit, Institute of Cancer Research, London, United Kingdom
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering University of Cyprus, Nicosia, Cyprus
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| |
Collapse
|
6
|
Sánchez-León ML, Jiménez-Cortegana C, Cabrera G, Vermeulen EM, de la Cruz-Merino L, Sánchez-Margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells. Front Immunol 2022; 13:1050484. [PMID: 36458011 PMCID: PMC9706090 DOI: 10.3389/fimmu.2022.1050484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells (DCs) are a heterogenous population of professional antigen presenting cells whose main role is diminished in a variety of malignancies, including cancer, leading to ineffective immune responses. Those mechanisms are inhibited due to the immunosuppressive conditions found in the tumor microenvironment (TME), where myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells known to play a key role in tumor immunoevasion by inhibiting T-cell responses, are extremely accumulated. In addition, it has been demonstrated that MDSCs not only suppress DC functions, but also their maturation and development within the myeloid linage. Considering that an increased number of DCs as well as the improvement in their functions boost antitumor immunity, DC-based vaccines were developed two decades ago, and promising results have been obtained throughout these years. Therefore, the remodeling of the TME promoted by DC vaccination has also been explored. Here, we aim to review the effectiveness of different DCs-based vaccines in murine models and cancer patients, either alone or synergistically combined with other treatments, being especially focused on their effect on the MDSC population.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Elba Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Victor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
7
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
8
|
Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent Advances in Experimental Dendritic Cell Vaccines for Cancer. Front Oncol 2021; 11:730824. [PMID: 34631558 PMCID: PMC8495208 DOI: 10.3389/fonc.2021.730824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023] Open
Abstract
The development of immunotherapeutic methods for the treatment of oncological diseases have made it possible to improve the effectiveness of standard therapies. There was no breakthrough after first using of personalized therapeutic vaccines based on dendritic cells in clinical practice. A deeper study of the biology of dendritic cells, as well as the use of new approaches and agents for antigenic work, have made it possible to expand the field of application of dendritic cell (DC) vaccines and improve the indicators of cancer patients. In addition, the low toxicity of DC vaccines in clinical trials makes it possible to use promising predictions of their applicability in wider clinical practice. This review examines new approaches and recent advances of the DC vaccine in clinical trials.
Collapse
Affiliation(s)
- Ivan Y Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
9
|
Ren EH, Deng YJ, Yuan WH, Zhang GZ, Wu ZL, Li CY, Xie QQ. An Immune-Related Long Non-Coding RNA Signature to Predict the Prognosis of Ewing's Sarcoma Based on a Machine Learning Iterative Lasso Regression. Front Cell Dev Biol 2021; 9:651593. [PMID: 34124041 PMCID: PMC8187926 DOI: 10.3389/fcell.2021.651593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to construct a new immune-associated long non-coding RNA (lncRNA) signature to predict the prognosis of Ewing sarcoma (ES) and explore its molecular mechanisms. We downloaded transcriptome and clinical prognosis data from the Gene Expression Omnibus (GSE17679, which included 88 ES samples and 18 matched normal skeletal muscle samples), and used it as a training set to identify immune-related lncRNAs with different expression levels in ES. Univariable Cox regression was used to screen immune-related lncRNAs related to ES prognosis, and an immune-related lncRNA signature was constructed based on machine learning iterative lasso regression. An external verification set was used to confirm the predictive ability of the signature. Clinical feature subgroup analysis was used to explore whether the signature was an independent prognostic factor. In addition, CIBERSORT was used to explore immune cell infiltration in the high- and low-risk groups, and to analyze the correlations between the lncRNA signature and immune cell levels. Gene set enrichment and variation analyses were used to explore the possible regulatory mechanisms of the immune-related lncRNAs in ES. We also analyzed the expression of 17 common immunotherapy targets in the high- and low-risk groups to identify any that may be regulated by immune-related lncRNAs. We screened 35 immune-related lncRNAs by univariate Cox regression. Based on this, an immune-related 11-lncRNA signature was generated by machine learning iterative lasso regression. Analysis of the external validation set confirmed its high predictive ability. DPP10 antisense RNA 3 was negatively correlated with resting dendritic cell, neutrophil, and γδ T cell infiltration, and long intergenic non-protein coding RNA 1398 was positively correlated with resting dendritic cells and M2 macrophages. These lncRNAs may affect ES prognosis by regulating GSE17721_CTRL_VS_PAM3CSK4_12H_BMDC_UP, GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_48H_UP, GSE29615_CTRL_VS_DAY3_ LAIV_IFLU_VACCINE_PBMC_UP, complement signaling, interleukin 2-signal transducer and activator of transcription 5 signaling, and protein secretion. The immune-related 11-lncRNA signature may also have regulatory effects on the immunotherapy targets CD40 molecule, CD70 molecule, and CD276 molecule. In conclusion, we constructed a new immune-related 11-lncRNA signature that can stratify the prognoses of patients with ES.
Collapse
Affiliation(s)
- En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Long Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
10
|
Birdi HK, Jirovec A, Cortés-Kaplan S, Werier J, Nessim C, Diallo JS, Ardolino M. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer 2021; 9:jitc-2020-001580. [PMID: 33526607 PMCID: PMC7852926 DOI: 10.1136/jitc-2020-001580] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a rare malignancy of mesenchymal tissues, comprizing a plethora of unique subtypes, with more than 60 types. The sheer heterogeneity of disease phenotype makes this a particularly difficult cancer to treat. Radiotherapy, chemotherapy and surgery have been employed for over three decades and, although effective in early disease (stages I–II), in later stages, where metastatic tumors are present, these treatments are less effective. Given the spectacular results obtained by cancer immunotherapy in a variety of solid cancers and leukemias, there is now a great interest in appliying this new realm of therapy for sarcomas. The widespread use of immunotherapy for sarcoma relies on immuno-profiling of subtypes, immunomonitoring for prognosis, preclinical studies and insight into the safety profile of these novel therapies. Herein, we discuss preclinical and clinical data highlighting how immunotherapy is being used in soft tissue sarcoma and bone sarcomas.
Collapse
Affiliation(s)
- Harsimrat Kaur Birdi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Anna Jirovec
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Serena Cortés-Kaplan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Joel Werier
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Unit, Ottawa Hospital Reseach Institute, Ottawa, Ontario, Canada
| | - Carolyn Nessim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Clinical Epidemiology Unit, Ottawa Hospital Reseach Institute, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Yan Y, Zeng S, Gong Z, Xu Z. Clinical implication of cellular vaccine in glioma: current advances and future prospects. J Exp Clin Cancer Res 2020; 39:257. [PMID: 33228738 PMCID: PMC7685666 DOI: 10.1186/s13046-020-01778-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Gliomas, especially glioblastomas, represent one of the most aggressive and difficult-to-treat human brain tumors. In the last few decades, clinical immunotherapy has been developed and has provided exceptional achievements in checkpoint inhibitors and vaccines for cancer treatment. Immunization with cellular vaccines has the advantage of containing specific antigens and acceptable safety to potentially improve cancer therapy. Based on T cells, dendritic cells (DC), tumor cells and natural killer cells, the safety and feasibility of cellular vaccines have been validated in clinical trials for glioma treatment. For TAA engineered T cells, therapy mainly uses chimeric antigen receptors (IL13Rα2, EGFRvIII and HER2) and DNA methylation-induced technology (CT antigen) to activate the immune response. Autologous dendritic cells/tumor antigen vaccine (ADCTA) pulsed with tumor lysate and peptides elicit antigen-specific and cytotoxic T cell responses in patients with malignant gliomas, while its pro-survival effect is biased. Vaccinations using autologous tumor cells modified with TAAs or fusion with fibroblast cells are characterized by both effective humoral and cell-mediated immunity. Even though few therapeutic effects have been observed, most of this therapy showed safety and feasibility, asking for larger cohort studies and better guidelines to optimize cellular vaccine efficiency in anti-glioma therapy.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan, 410008, Changsha, China.
| |
Collapse
|