1
|
Kim J, Gilbert JL, Lv WW, Du P, Pan H. Reduction reactions dominate the interactions between Mg alloys and cells: Understanding the mechanisms. Bioact Mater 2025; 45:363-387. [PMID: 39687558 PMCID: PMC11647666 DOI: 10.1016/j.bioactmat.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Magnesium (Mg) alloys are popular biodegradable metals studied for orthopedic and cardiovascular applications, mainly because Mg ions are essential trace elements known to promote angiogenesis and osteogenesis. However, Mg corrosion consists of oxidation and reduction reactions that produce by-products, such as hydrogen gas, reactive oxygen species, and hydroxides. It is still unclear how all these by-products and Mg ions concomitantly alter the microenvironment and cell behaviors spatially and temporally. This study shows that Mg corrosion can enhance cell proliferation by reducing intracellular ROS. However, Mg cannot decrease ROS and promote cell proliferation in simulated inflammatory conditions, meaning the microenvironment is critical. Furthermore, cells may respond to Mg ions differently in chronic or acute alkaline pH or oxidative stress. Depending on the corrosion rate, Mg modulates HIF1α and many signaling pathways like PI3K/AKT/mTOR, mitophagy, cell cycle, and oxidative phosphorylation. Therefore, this study provides a fundamental insight into the importance of reduction reactions in Mg alloys.
Collapse
Affiliation(s)
- Jua Kim
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
| | - Jeremy L. Gilbert
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
- Clemson- Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, 68 Presidents St, Charleston, SC, 39425, USA
| | - William W. Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Ping Du
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
- College of Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, PR China
| |
Collapse
|
2
|
Yu Y, He Y, Xie Z. Accurate Identification of Spatial Domain by Incorporating Global Spatial Proximity and Local Expression Proximity. Biomolecules 2024; 14:674. [PMID: 38927077 PMCID: PMC11201407 DOI: 10.3390/biom14060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Accurate identification of spatial domains is essential in the analysis of spatial transcriptomics data in order to elucidate tissue microenvironments and biological functions. However, existing methods only perform domain segmentation based on local or global spatial relationships between spots, resulting in an underutilization of spatial information. To this end, we propose SECE, a deep learning-based method that captures both local and global relationships among spots and aggregates their information using expression similarity and spatial similarity. We benchmarked SECE against eight state-of-the-art methods on six real spatial transcriptomics datasets spanning four different platforms. SECE consistently outperformed other methods in spatial domain identification accuracy. Moreover, SECE produced spatial embeddings that exhibited clearer patterns in low-dimensional visualizations and facilitated a more accurate trajectory inference.
Collapse
Affiliation(s)
- Yuanyuan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China;
| | - Yao He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China;
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China;
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Shirani N, Mahdi‐Esferizi R, Eshraghi Samani R, Tahmasebian S, Yaghoobi H. In silico identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene expression in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2114. [PMID: 38886335 PMCID: PMC11182701 DOI: 10.1002/cnr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Roohallah Mahdi‐Esferizi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Reza Eshraghi Samani
- Department of General SurgerySchool of Medicine, Isfahan University of Medical SciencesIsfahanIran
| | - Shahram Tahmasebian
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
4
|
Zhang S, Pan P, Xie H, Wei C, Wang Q, Yang B, Sun Y, Li Y, Luo Y, Song Y, Jiang Q, Huang Y. Resveratrol improves meat quality traits by activating the lncRNAs-KEAP1-NRF2 axis in pigs. Meat Sci 2024; 209:109411. [PMID: 38061306 DOI: 10.1016/j.meatsci.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
This research aims at uncovering the effects and investigating the molecular mechanisms of dietary resveratrol (RES) supplementation on antioxidant capacity and meat quality of pigs. In this study, 20 μM RES could activate the KEAP1-NRF2 antioxidant defense pathway in response to oxidative stress in porcine skeletal muscle satellite cells was firstly found. Then, twenty-four healthy crossbred castrated boars were allocated to 4 treatments that were fed with a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. 400 and 600 mg/kg RES-supplemented diet can effectively improve the meat quality traits and activities of antioxidizing enzymes via the KEAP1-NRF2 signaling pathway of pigs. The molecular dynamic simulation further revealed that RES could directly binding to KEAP1 to reduce the tightness of KEAP1-NRF2 protein-protein interaction. More importantly, dietary supplementation of RES also improves antioxidant capacity through a series of KEAP1-NRF2 pathway-related lncRNAs were found by RNA sequencing (RNA-seq). Altogether, this study demonstrated that RES improves meat quality traits by effectively increasing antioxidant levels via the lncRNA-KEAP1-NRF2 axis in vivo and/or in vitro. These results provide new insights into the molecular mechanisms by which RES, as a nutritional agent, regulates antioxidant capacity and improves meat quality in pigs.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yunyan Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ying Song
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Lin YX, Pan JY, Feng WD, Huang TC, Li CZ. MRPL48 is a novel prognostic and predictive biomarker of hepatocellular carcinoma. Eur J Med Res 2023; 28:589. [PMID: 38093387 PMCID: PMC10720175 DOI: 10.1186/s40001-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer and poses a threat to the health and survival of humans. Mitochondrial ribosomal protein L48 (MRPL48) belongs to the mitochondrial ribosomal protein family, which participates in energy production. Studies have shown that MRPL48 can predict osteosarcoma incidence and prognosis, as well as promotes colorectal cancer progression. However, the role of MRPL48 in HCC remains unknown. METHODS TCGA, GEO, HCCDB, CPTAC, SMART, UALCAN, Kaplan-Meier plotter, cBioPortal, and MethSurv were performed for bioinformatics purposes. Quantitative RT-PCR, immunoblotting, and functional studies were conducted to validate the methodology in vitro. RESULTS MRPL48 was greatly overexpressed in HCC tissues, compared with healthy tissue, which was subsequently demonstrated in vitro as well. The survival and regression analyses showed that MRPL48 expression is of significant clinical prognostic value in HCC. The ROC curve and nomogram analysis indicated that MRPL48 is a powerful predictor of HCC. MRPL48 methylation was adversely associated with the expression of MRPL48, and patients with a low level of methylation had poorer overall survival than those with a high level of methylation. GSEA showed that the expression of the MRPL48 was correlated with Resolution of Sister Chromatid Cohesion, Mitotic Prometaphase, Retinoblastoma Gene in Cancer, RHO Gtpases Activate Formins, Mitotic Metaphase and Anaphase, and Cell Cycle Checkpoints. An analysis of immune cell infiltration showed a significant association between MRPL48 and immune cell infiltration subsets, which impacted the survival of HCC patients. Additionally, MRPL48 knockdown reduced HCC cell proliferation, migration, and invasion in vitro. CONCLUSIONS We demonstrated that MRPL48 expression may be associated with HCC development and prognosis. These findings may open up new research directions and opportunities for the development of HCC treatments.
Collapse
Affiliation(s)
- Yu-Xiang Lin
- Central Supply Service Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 36200, People's Republic of China
| | - Jun-Yong Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Wen-Du Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Tian-Cong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Cheng-Zong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China.
| |
Collapse
|
6
|
Yan S, Wu S, Wu J, Zhang Q, He Y, Jiang C, Jin T. Genetic polymorphisms of MRPS30-DT and NINJ2 may influence lung cancer risk. Open Med (Wars) 2023; 18:20230655. [PMID: 36910850 PMCID: PMC9999113 DOI: 10.1515/med-2023-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the malignant tumors, and genetic background is a risk factor in lung cancer that cannot be neglected. In this study, we aimed to find out the effect of MRPS30-DT and NINJ2 variants on lung cancer risk. In this study, the seven selected single-nucleotide polymorphisms (SNPs) of MRPS30-DT and NINJ2 were genotyped in 509 lung cancer patients and 501 healthy controls based on the Agena MassARRAY platform. Odds ratios and 95% confidence intervals were calculated by logistic regression analysis to evaluate association between gene polymorphisms and lung cancer risk. False-positive report probability was also used to assess false-positive results. Furthermore, the interaction between SNPs was analyzed by multifactor dimensionality reduction to predict lung cancer risk. We identified the genotype TA of rs16901963 (T < A) in MRPS30-DT as a protective factor against lung cancer, while rs16901963-TT was significantly associated with an increased risk of lung cancer. We also revealed that the effect of MRPS30-DT and NINJ2 variants on the risk of lung cancer was dependent on age, gender, smoking, and drinking status. In conclusion, this study first proved that MRPS30-DT and NINJ2 variants played important roles in affecting the susceptibility to lung cancer.
Collapse
Affiliation(s)
- Shouchun Yan
- Department of Emergency Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang712000, Shaanxi Province, China
| | - Shouzhen Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang712000, Shaanxi Province, China
| | - Jia Wu
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang712046, Shaanxi Province, China
| | - Qinlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an710061, Shaanxi Province, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang712082, Shaanxi Province, China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an710038, Shaanxi Province, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6, Wenhui East Road, Xianyang712082, Shaanxi Province, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an710069, Shaanxi Province, China
| |
Collapse
|
7
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
8
|
CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488905. [PMID: 35815279 PMCID: PMC9262520 DOI: 10.1155/2022/1488905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of sarcopenia and can increase morbidity and mortality in specific patient populations. The aim of this study was to identify novel prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods. The samples were first divided into different age groups and different muscle type groups, respectively, and each of these samples was analyzed for differences to obtain two groups of differentially expressed genes (DEGs). The two groups of DEGs were intersected using Venn diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO) functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Subsequently, WGCNA (weighted gene coexpression network analysis) was used to find gene modules associated with both the age and muscle type to obtain the lightgreen module. The genes in the key modules were analyzed using PPI, and the top five genes were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In conclusion, we identified that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.
Collapse
|
9
|
Zhao L, Han L, Wei X, Zhou Y, Zhang Y, Si N, Wang H, Yang J, Bian B, Zhao H. Toxicokinetics of Arenobufagin and its Cardiotoxicity Mechanism Exploration Based on Lipidomics and Proteomics Approaches in Rats. Front Pharmacol 2022; 12:780016. [PMID: 35002716 PMCID: PMC8727535 DOI: 10.3389/fphar.2021.780016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Arenobufagin (ArBu), one of the main active bufadienolides of toad venom with cardiotonic effect, analgesic effect, and outstanding anti-tumor potentiality, is also a potential cardiotoxic component. In the present study, the cardiac effect of ArBu and its underlying mechanism were explored by integrating data such as heart rates, toxicokinetics, myocardial enzyme and brain natriuretic peptide (BNP) activity, pathological sections, lipidomics and proteomics. Under different doses, the cardiac effects turned out to be different. The oral dose of 60 mg/kg of ArBu sped up the heart rate. However, 120 mg/kg ArBu mainly reduced the heart rate. Over time, they all returned to normal, consisting of the trend of ArBu concentration-time curve. High concentrations of myocardial enzymes and BNP indicated that ArBu inhibited or impaired the cardiac function of rats. Pathological sections of hearts also showed that ArBu caused myocardial fiber disorder and rupture, in which the high-dose group was more serious. At the same time, serum and heart tissue lipidomics were used to explore the changes in body lipid metabolism under different doses. The data indicated a larger difference in the high-dose ArBu group. There were likewise many significant differences in the proteomics of the heart. Furthermore, a multi-layered network was used to integrate the above information to explore the potential mechanism. Finally, 4 proteins that were shown to be significantly and differentially expressed were validated by targeted proteomics using parallel reaction monitoring (PRM) analysis. Our findings indicated that ArBu behaved as a bidirectional regulation of the heart. The potential mechanism of cardiac action was revealed with the increased dose, which provided a useful reference for the safety of clinical application of ArBu.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Shaanxi Chinese Medicine Institute (Shaanxi Pharmaceutical Information Center), Xianyang, China
| | - Lingyu Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaolu Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Chen X, Li H, Liu Y, Liu J, Sun Y, Wu J, Xiong Z, Cao W. The contribution of the LOC105371267 and MRPS30-DT genetic polymorphisms to IgA nephropathy in the Chinese Han population. Am J Transl Res 2021; 13:11718-11727. [PMID: 34786099 PMCID: PMC8581847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Genetic factors are reported to play an essential role in IgAN progression. This study was designed to investigate the association between LOC105371267 and MRPS30-DT and IgAN risk among the Chinese Han population. METHODS Six SNPs were genotyped. A logistic regression model was used to calculate the effects of the candidate SNPs on IgAN. The SNP-SNP interaction was analyzed using multifactor dimensionality reduction. RESULTS We observed that only LOC105371267 had a relationship with IgAN. The results indicated an association between the genotype "CC" and a decreased IgAN risk (OR=0.44, P=0.014). The stratification analysis of the patients over 35 years old showed that rs3931698 contributes to IgAN susceptibility in the "GT" genotype (OR=1.78, P=0.038), while rs8044565 showed a significantly decreased risk-effect with IgAN ("T", OR=0.59, P=0.006; "CC", OR=0.15, P=0.015; "CC-CT", OR=0.59, P=0.023; Log-additive, OR=0.56, P=0.005). rs8044565 was correlated with a decreased susceptibility of IgAN in males ("CC", OR=0.27, P=0.006) and in patients with a Lee's grade ≥III ("CC", OR=0.46, P=0.046). We found rs8044565 is related to systolic blood pressure and urinary casts and rs3852740 has a relationship with the serum C3 and hemoglobin levels (P<0.05). CONCLUSION The present study demonstrated that the SNPs in long non-coding RNAs might be related to IgAN.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Nephrology, Xi’an Hospital of Traditional Chinese MedicineXi’an 710021, Shaanxi, China
- Department of Nephrology, Xi’an Affiliated Hospital of Shaanxi University of Chinese MedicineXi’an 710021, Shaanxi, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest UniversityXi’an 710069, Shaanxi, China
| | - Wen Cao
- Department of Nephrology, Xi’an Hospital of Traditional Chinese MedicineXi’an 710021, Shaanxi, China
- Department of Nephrology, Xi’an Affiliated Hospital of Shaanxi University of Chinese MedicineXi’an 710021, Shaanxi, China
| |
Collapse
|
11
|
Pandey P, Khan F, Alzahrani FA, Qari HA, Oves M. A Novel Approach to Unraveling the Apoptotic Potential of Rutin (Bioflavonoid) via Targeting Jab1 in Cervical Cancer Cells. Molecules 2021; 26:molecules26185529. [PMID: 34577000 PMCID: PMC8472561 DOI: 10.3390/molecules26185529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 01/29/2023] Open
Abstract
Rutin has been well recognized for possessing numerous pharmacological and biological activities in several human cancer cells. This research has addressed the inhibitory potential of rutin against the Jab1 oncogene in SiHa cancer cells, which is known to inactivate various tumor suppressor proteins including p53 and p27. Further, the inhibitory efficacy of rutin via Jab1 expression modulation in cervical cancer has not been yet elucidated. Hence, we hypothesized that rutin could exhibit strong inhibitory efficacy against Jab1 and, thereby, induce significant growth arrest in SiHa cancer cells in a dose-dependent manner. In our study, the cytotoxic efficacy of rutin on the proliferation of a cervical cancer cell line (SiHa) was exhibited using MTT and LDH assays. The correlation between rutin and Jab1 mRNA expression was assessed by RT-PCR analysis and the associated events (a mechanism) with this downregulation were then explored via performing ROS assay, DAPI analysis, and expression analysis of apoptosis-associated signaling molecules such as Bax, Bcl-2, and Caspase-3 and -9 using qRT-PCR analysis. Results exhibit that rutin produces anticancer effects via inducing modulation in the expression of oncogenes as well as tumor suppressor genes. Further apoptosis induction, caspase activation, and ROS generation in rutin-treated SiHa cancer cells explain the cascade of events associated with Jab1 downregulation in SiHa cancer cells. Additionally, apoptosis induction was further confirmed by the FITC-Annexin V/PI double staining method. Altogether, our research supports the feasibility of developing rutin as one of the potent drug candidates in cervical cancer management via targeting one such crucial oncogene associated with cervical cancer progression.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India; or
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India; or
- Correspondence: or (F.K.); or (M.O.); Tel.: +91-8923580628 (F.K.); +966-650399857 (M.O.)
| | - Faisal Abdulrahman Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cells Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Huda A. Qari
- Department of biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or (F.K.); or (M.O.); Tel.: +91-8923580628 (F.K.); +966-650399857 (M.O.)
| |
Collapse
|
12
|
Pandey P, Khan F, Maurya P. Targeting Jab1 using hesperidin (dietary phytocompound) for inducing apoptosis in HeLa cervical cancer cells. J Food Biochem 2021; 45:e13800. [PMID: 34047379 DOI: 10.1111/jfbc.13800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Plant flavonoids have been emerged as a potent anticancerous agent by exhibiting significant growth inhibitory potential and apoptotic induction in several carcinomas via targeting several oncoproteins. However, inverse association of hesperidin with Jab1 oncoprotein in cervical cancer has rarely been reported. Thus, we have intended our research study towards establishing this unexplored inverse correlation of hesperidin with Jab1 which could further prevent cervical cancer progression. Our research findings clearly demonstrated that hesperidin treatment resulted in Jab1 gene down-regulation and p27 up-regulation in a dose-dependent manner in HeLa cancer cells. These gene modulations might occur via excessive reactive oxygen species (ROS) generation and caspase-3 activation which further resulted in apoptotic induction. Increase in apoptotic cells was confirmed through Hoechst staining and cell cycle analysis. Thus, these results strongly suggested that Jab1 is a potent therapeutic target of hesperidin to suppress cell growth and trigger apoptosis in HeLa cells. PRACTICAL APPLICATIONS: Dietary flavonoids play a crucial role in the management of numerous malignancies via targeting several mutated oncogenes. Our study strongly exhibited that hesperidin treatment suppressed the HeLa cancer cell proliferation via increased ROS generation and reduced Jab1 mRNA expression. Thus, the inference of Jab1-mediated intracellular signals by hesperidin might be a novel approach to control cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Pooja Maurya
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| |
Collapse
|
13
|
Shi D, Mu S, Hu B, Zhang S, Liu J, Zhang Z, Shao Z. Prognostic role of c-Jun activation domain-binding protein-1 in cancer: A systematic review and meta-analysis. J Cell Mol Med 2021; 25:2750-2763. [PMID: 33550701 PMCID: PMC7957274 DOI: 10.1111/jcmm.16334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shidai Mu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases. Int J Mol Sci 2020; 21:ijms21228879. [PMID: 33238645 PMCID: PMC7700125 DOI: 10.3390/ijms21228879] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors. This paper reviews the basic structure of mitochondrial ribosome, focuses on the structure and function of MRPs, and their relationships with cell apoptosis and diseases. It provides a reference for the study of the function of MRPs and the disease diagnosis and treatment.
Collapse
|
15
|
Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr Patterns 2020; 38:119147. [PMID: 32987154 DOI: 10.1016/j.gep.2020.119147] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components for the structural and functional integrity of the mitoribosome complex. Throughout evolution, the mammalian mitoribosome has acquired new Mrp genes to compensate for loss of ribosomal RNA. More than 80 MRPs have been identified in mammals. Here we document expression pattern of 79 Mrp genes during mouse development and adult tissues and find that these genes are consistently expressed throughout early embryogenesis with little stage or tissue specificity. Further investigation of the amino acid sequence reveals that this group of proteins has little to no protein similarity. Recent work has shown that the majority of Mrp genes are essential resulting in early embryonic lethality, suggesting no functional redundancy among the group. Taken together, these results indicate that the Mrp genes are not a gene family descended from a single ancestral gene, and that each MRP has unique and essential role in the mitoribosome complex. The lack of functional redundancy is surprising given the importance of the mitoribosome for cellular and organismal viability. Further, these data suggest that genomic variants in Mrp genes may be causative for early pregnancy loss and should be evaluated as clinically.
Collapse
|