1
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
2
|
Riabov V, Xu Q, Schmitt N, Streuer A, Ge G, Bolanos L, Wunderlich M, Jann JC, Wein A, Altrock E, Demmerle M, Mukherjee S, Ali AM, Rapp F, Nowak V, Weimer N, Obländer J, Palme I, Göl M, Jawhar A, Darwich A, Wuchter P, Weiss C, Raza A, Foulks JM, Starczynowski DT, Yang FC, Metzgeroth G, Steiner L, Jawhar M, Hofmann WK, Nowak D. ASXL1 mutations are associated with a response to alvocidib and 5-azacytidine combination in myelodysplastic neoplasms. Haematologica 2024; 109:1426-1438. [PMID: 37916386 PMCID: PMC11063838 DOI: 10.3324/haematol.2023.282921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMA) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5-azacytidine (5-AZA) could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in N=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene expression of the pro-apoptotic factor NOXA in ASXL1-mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim.
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Guo Ge
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Alina Wein
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Marie Demmerle
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Sanjay Mukherjee
- Myelodysplastic Syndromes Center, Columbia University Irving Medical Center, Columbia University, New York
| | - Abdullah Mahmood Ali
- Myelodysplastic Syndromes Center, Columbia University Irving Medical Center, Columbia University, New York
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Melda Göl
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Azra Raza
- Myelodysplastic Syndromes Center, Columbia University Irving Medical Center, Columbia University, New York
| | | | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Laurenz Steiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Mohamad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim.
| |
Collapse
|
3
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Beltrán-Visiedo M, Jiménez-Alduán N, Díez R, Cuenca M, Benedi A, Serrano-Del Valle A, Azaceta G, Palomera L, Peperzak V, Anel A, Naval J, Marzo I. Dinaciclib synergizes with BH3 mimetics targeting BCL-2 and BCL-X L in multiple myeloma cell lines partially dependent on MCL-1 and in plasma cells from patients. Mol Oncol 2023; 17:2507-2525. [PMID: 37704591 DOI: 10.1002/1878-0261.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
A better understanding of multiple myeloma (MM) biology has led to the development of novel therapies. However, MM is still an incurable disease and new pharmacological strategies are needed. Dinaciclib, a multiple cyclin-dependent kinase (CDK) inhibitor, which inhibits CDK1, 2, 5 and 9, displays significant antimyeloma activity as found in phase II clinical trials. In this study, we have explored the mechanism of dinaciclib-induced death and evaluated its enhancement by different BH3 mimetics in MM cell lines as well as in plasma cells from MM patients. Our results indicate a synergistic effect of dinaciclib-based combinations with B-cell lymphoma 2 or B-cell lymphoma extra-large inhibitors, especially in MM cell lines with partial dependence on myeloid cell leukemia sequence 1 (MCL-1). Simultaneous treatment with dinaciclib and BH3 mimetics ABT-199 or A-1155463 additionally showed a synergistic effect in plasma cells from MM patients, ex vivo. Altered MM cytogenetics did not affect dinaciclib response ex vivo, alone or in combined treatment, suggesting that these combinations could be a suitable therapeutic option for patients bearing cytogenetic alterations and poor prognosis. This work also opens the possibility to explore cyclin-dependent kinase 9 inhibition as a targeted therapy in MM patients overexpressing or with high dependence on MCL-1.
Collapse
Affiliation(s)
| | | | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
- Hematology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Marta Cuenca
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Andrea Benedi
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| |
Collapse
|
5
|
Chong SJF, Zhu F, Dashevsky O, Mizuno R, Lai JX, Hackett L, Ryan CE, Collins MC, Iorgulescu JB, Guièze R, Penailillo J, Carrasco R, Hwang YC, Muñoz DP, Bouhaddou M, Lim YC, Wu CJ, Allan JN, Furman RR, Goh BC, Pervaiz S, Coppé JP, Mitsiades CS, Davids MS. Hyperphosphorylation of BCL-2 family proteins underlies functional resistance to venetoclax in lymphoid malignancies. J Clin Invest 2023; 133:e170169. [PMID: 37751299 PMCID: PMC10645378 DOI: 10.1172/jci170169] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
The B cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL2 mutations have been described, this probably only explains a subset of resistant cases. Using 2 complementary functional precision medicine techniques - BH3 profiling and high-throughput kinase activity mapping - we found that hyperphosphorylation of BCL-2 family proteins, including antiapoptotic myeloid leukemia 1 (MCL-1) and BCL-2 and proapoptotic BCL-2 agonist of cell death (BAD) and BCL-2 associated X, apoptosis regulator (BAX), underlies functional mechanisms of both intrinsic and acquired resistance to venetoclax in CLL and DLBCL. Additionally, we provide evidence that antiapoptotic BCL-2 family protein phosphorylation altered the apoptotic protein interactome, thereby changing the profile of functional dependence on these prosurvival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs rewired these dependencies, thus restoring sensitivity to venetoclax in a panel of venetoclax-resistant lymphoid cell lines, a resistant mouse model, and in paired patient samples before venetoclax treatment and at the time of progression.
Collapse
MESH Headings
- Mice
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- bcl-X Protein/genetics
- Apoptosis Regulatory Proteins
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Fen Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rin Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jolin X.H. Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Liam Hackett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary C. Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Romain Guièze
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Johany Penailillo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yeonjoo C. Hwang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Denise P. Muñoz
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Yaw Chyn Lim
- Cancer Science Institute, National University of Singapore, Singapore
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John N. Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard R. Furman
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Boon Cher Goh
- Cancer Science Institute, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Jonas BA, Hou JZ, Roboz GJ, Alvares CL, Jeyakumar D, Edwards JR, Erba HP, Kelly RJ, Röllig C, Fiedler W, Brackman D, Siddani SR, Chyla B, Hilger-Rolfe J, Watts JM. A phase 1b study of venetoclax and alvocidib in patients with relapsed/refractory acute myeloid leukemia. Hematol Oncol 2023; 41:743-752. [PMID: 37086447 PMCID: PMC10757832 DOI: 10.1002/hon.3159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/24/2023]
Abstract
Relapsed/refractory (R/R) Acute Myeloid Leukemia (AML) is a genetically complex and heterogeneous disease with a poor prognosis and limited treatment options. Thus, there is an urgent need to develop therapeutic combinations to overcome drug resistance in AML. This open-label, multicenter, international, phase 1b study evaluated the safety, efficacy, and pharmacokinetics of venetoclax in combination with alvocidib in patients with R/R AML. Patients were treated with escalating doses of venetoclax (400, 600, and 800 mg QD, orally, days 1-28) and alvocidib (45 and 60 mg/m2 , intravenously, days 1-3) in 28-day cycles. The combination was found to be safe and tolerable, with no maximum tolerated dose reached. Drug-related Grade ≥3 adverse events were reported in 23 (65.7%) for venetoclax and 24 (68.6%) for alvocidib. No drug-related AEs were fatal. Gastrointestinal toxicities, including diarrhea, nausea, and vomiting were notable and frequent; otherwise, the toxicities reported were consistent with the safety profile of both agents. The response rate was modest (complete remission [CR] + incomplete CR [CRi], 11.4%; CR + CRi + partial response rate + morphologic leukemia-free state, 20%). There was no change in alvocidib pharmacokinetics with increasing doses of venetoclax. However, when venetoclax was administered with alvocidib, AUC24 and Cmax decreased by 18% and 19%, respectively. A recommended phase 2 dose was not established due to lack of meaningful increase in efficacy across all cohorts compared to what was previously observed with each agent alone. Future studies could consider the role of the sequence, dosing, and the use of a more selective MCL1 inhibitor for the R/R AML population.
Collapse
Affiliation(s)
- Brian A Jonas
- Department of Internal Medicine, Division of Malignant Hematology, Cell Therapy and Transplantation, University of California Davis, Davis, California, USA
| | - Jing-Zhou Hou
- University of Pittsburgh Medical Center Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Gail J Roboz
- Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York, USA
| | | | - Deepa Jeyakumar
- Chao Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - John R Edwards
- Indiana Blood and Marrow Transplantation, Indianapolis, Indiana, USA
| | - Harry P Erba
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard J Kelly
- Department of Haematology, St. James's University Hospital, Leeds, UK
| | | | - Walter Fiedler
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | - Justin M Watts
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, Lee S, Lasry A, Sun Z, Papaioannou D, Cammer M, Wang K, Zal T, Zal MA, Carter BZ, Ishizawa J, Tibes R, Tsirigos A, Andreeff M, Gavathiotis E, Aifantis I. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov 2023; 13:1656-1677. [PMID: 37088914 PMCID: PMC10330144 DOI: 10.1158/2159-8290.cd-22-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetic therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3 mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3 mimetics in AML. Insensitivity to BH3 mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux, which acts as a prosurvival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3 mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML. SIGNIFICANCE AML remains one of the most difficult-to-treat blood cancers. BH3 mimetics represent a promising therapeutic approach to eliminate AML blasts by activating the apoptotic pathway. Enhanced mitochondrial clearance drives resistance to BH3 mimetics and predicts poor prognosis. Reverting excessive mitophagy can halt BH3-mimetic resistance in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wafa Al-Santli
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Soobeom Lee
- Department of Biology, New York University, New York, NY 10003, USA
| | - Audrey Lasry
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrios Papaioannou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tomasz Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malgorzata Anna Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
9
|
van der Noord VE, van der Stel W, Louwerens G, Verhoeven D, Kuiken HJ, Lieftink C, Grandits M, Ecker GF, Beijersbergen RL, Bouwman P, Le Dévédec SE, van de Water B. Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors. Breast Cancer Res 2023; 25:51. [PMID: 37147730 PMCID: PMC10161439 DOI: 10.1186/s13058-023-01648-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.
Collapse
Affiliation(s)
- Vera E van der Noord
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijs Louwerens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Danielle Verhoeven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hendrik J Kuiken
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melanie Grandits
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Combination Therapies Targeting Apoptosis in Paediatric AML: Understanding the Molecular Mechanisms of AML Treatments Using Phosphoproteomics. Int J Mol Sci 2023; 24:ijms24065717. [PMID: 36982791 PMCID: PMC10058112 DOI: 10.3390/ijms24065717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) continues to present treatment challenges, as no “standard approach” exists to treat those young patients reliably and safely. Combination therapies could become a viable treatment option for treating young patients with AML, allowing multiple pathways to be targeted. Our in silico analysis of AML patients highlighted “cell death and survival” as an aberrant, potentially targetable pathway in paediatric AML patients. Therefore, we aimed to identify novel combination therapies to target apoptosis. Our apoptotic drug screening resulted in the identification of one potential “novel” drug pairing, comprising the Bcl-2 inhibitor ABT-737 combined with the CDK inhibitor Purvalanol-A, as well as one triple combination of ABT-737 + AKT inhibitor + SU9516, which showed significant synergism in a series of paediatric AML cell lines. Using a phosphoproteomic approach to understand the apoptotic mechanism involved, proteins related to apoptotic cell death and cell survival were represented, in agreement with further results showing differentially expressed apoptotic proteins and their phosphorylated forms among combination treatments compared to single-agent treated cells such upregulation of BAX and its phosphorylated form (Thr167), dephosphorylation of BAD (Ser 112), and downregulation of MCL-1 and its phosphorylated form (Ser159/Thr 163). Total levels of Bcl-2 were decreased but correlated with increased levels of phosphorylated Bcl-2, which was consistent with our phosphoproteomic analysis predictions. Bcl-2 phosphorylation was regulated by extracellular-signal-regulated kinase (ERK) but not PP2A phosphatase. Although the mechanism linking to Bcl-2 phosphorylation remains to be determined, our findings provide first-hand insights on potential novel combination treatments for AML.
Collapse
|
11
|
Garciaz S, Miller T, Collette Y, Vey N. Targeting regulated cell death pathways in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:151-168. [PMID: 37065864 PMCID: PMC10099605 DOI: 10.20517/cdr.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML patients, particularly those resistant to intrinsic apoptosis.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Hematology Department, Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Thomas Miller
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Yves Collette
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Norbert Vey
- Hematology Department, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| |
Collapse
|
12
|
Koo BK, Choi EJ, Hur EH, Moon JH, Kim JY, Park HS, Choi Y, Lee JH, Lee KH, Choi EK, Kim J, Lee JH. Antileukemic activity of YPN-005, a CDK7 inhibitor, inducing apoptosis through c-MYC and FLT3 suppression in acute myeloid leukemia. Heliyon 2022; 8:e11004. [PMID: 36276757 PMCID: PMC9579003 DOI: 10.1016/j.heliyon.2022.e11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a high rate of relapse associated with adverse survival outcomes, especially in elderly patients. An aberrant expression of cyclin dependent kinase 7 (CDK7) is associated with poor outcomes and CDK7 inhibition has showed antitumor activities in various cancers. We investigated the efficacy of YPN-005, a CDK7 inhibitor in AML cell lines, xenograft mouse model, and primary AML cells. YPN-005 effectively inhibited the proliferation of AML cells by inducing apoptosis and reducing phosphorylation of RNA polymerase II. The c-MYC expression decreased with treatment of YPN-005, and the effect of YPN-005 was negatively correlated with c-MYC expression. YPN-005 also showed antileukemic activities in primary AML cells, especially those harboring FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutation and in in vivo mouse model. Phosphorylated FLT3/Signal transducer and activator of transcription 5 (STAT5) was decreased and FLT3/STAT5 was downregulated with YPN-005 treatment. Our data suggest that YPN-005 has a role in treating AML by suppressing c-MYC and FLT3.
Collapse
Affiliation(s)
- Bon-Kwan Koo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea,Corresponding author.
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea,Corresponding author.
| | - Ju Hyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Yun Kim
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han-Seung Park
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yunsuk Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Hee Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer Therapeutics, Asan Medical Center, Seoul, South Korea
| | - Jinhwan Kim
- R&D Institute, Yungjin Pharmaceutical Co., Ltd, South Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Zhang P, Brinton LT, Gharghabi M, Sher S, Williams K, Cannon M, Walker JS, Canfield D, Beaver L, Cempre CB, Phillips H, Chen X, Yan P, Lehman A, Scherle P, Wang M, Vaddi K, Baiocchi R, Wang R, Sampath D, Alinari L, Blachly JS, Lapalombella R. Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor-mediated synergistic antileukemic actions. SCIENCE ADVANCES 2022; 8:eabp9005. [PMID: 36112677 PMCID: PMC9481139 DOI: 10.1126/sciadv.abp9005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 05/09/2023]
Abstract
Using a genome-wide CRISPR screen, we identified CDK9, DHODH, and PRMT5 as synthetic lethal partners with gilteritinib treatment in fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) and genetically and pharmacologically validated their roles in gilteritinib sensitivity. The presence of FLT3-ITD is associated with an increase in anaerobic glycolysis, rendering leukemia cells highly sensitive to inhibition of glycolysis. Supportive of this, our data show the enrichment of single guide RNAs targeting 28 glycolysis-related genes upon gilteritinib treatment, suggesting that switching from glycolysis to oxidative phosphorylation (OXPHOS) may represent a metabolic adaption of AML in gilteritinib resistance. CDK9i/FLT3i, DHODHi/FLT3i, and PRMT5i/FLT3i pairs mechanistically converge on OXPHOS and purine biosynthesis blockade, implying that targeting the metabolic functions of these three genes and/or proteins may represent attractive strategies to sensitize AML to gilteritinib treatment. Our findings provide the basis for maximizing therapeutic impact of FLT3-ITD inhibitors and a rationale for a clinical trial of these novel combinations.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Lindsey T. Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mehdi Gharghabi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Department of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew Cannon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Casey B. Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | | | - Min Wang
- Prelude Therapeutics, Wilmington, DE, USA
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, DE, USA
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
14
|
Liu H, Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene 2022; 822:146325. [PMID: 35183683 DOI: 10.1016/j.gene.2022.146325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
15
|
Wei D, Wang H, Zeng Q, Wang W, Hao B, Feng X, Wang P, Song N, Kan W, Huang G, Zhou X, Tan M, Zhou Y, Huang R, Li J, Chen XH. Discovery of Potent and Selective CDK9 Degraders for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J Med Chem 2021; 64:14822-14847. [PMID: 34538051 DOI: 10.1021/acs.jmedchem.1c01350] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with very limited treatment options due to the lack of efficient targeted therapies and thus still remains clinically challenging. Targeting transcription-associated cyclin-dependent kinases to remodel transcriptional regulation shows great promise in cancer therapy. Herein, we report the synthesis, optimization, and evaluation of new series of heterobifunctional molecules as highly selective and efficacious CDK9 degraders, enabling potent inhibition of TNBC cell growth and rapidly targeted degradation of CDK9. Moreover, the most potent CDK9 degrader (compound 45) induces cell apoptosis in vitro and inhibits tumor growth in the MDA-MB-231 TNBC model. Furthermore, the RNA-seq, immunohistochemistry assays demonstrate that the CDK9 degrader downregulates the downstream targets, such as MYC, at the transcriptional level, resulting apoptosis in TNBC cells. Our work establishes that 45 is a highly potent and efficacious CDK9 degrader for targeting transcription regulation, which represents an effective strategy and great potential as a new targeted therapy for TNBC.
Collapse
Affiliation(s)
- Dan Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlin Wang
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xule Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guifang Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Li
- College of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan, Guangdong 528400, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiao-Hua Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
16
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
18
|
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther 2021; 230:107943. [PMID: 34182005 DOI: 10.1016/j.pharmthera.2021.107943] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
19
|
Kazi A, Chen L, Xiang S, Vangipurapu R, Yang H, Beato F, Fang B, Williams TM, Husain K, Underwood P, Fleming JB, Malafa M, Welsh EA, Koomen J, Trevino J, Sebti SM. Global Phosphoproteomics Reveal CDK Suppression as a Vulnerability to KRas Addiction in Pancreatic Cancer. Clin Cancer Res 2021; 27:4012-4024. [PMID: 33879459 DOI: 10.1158/1078-0432.ccr-20-4781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Liwei Chen
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Shengyan Xiang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rajanikanth Vangipurapu
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hua Yang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John Koomen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - José Trevino
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Saïd M Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
20
|
Wu W, Cao X, Mo L. Overexpression of KDM4D promotes acute myeloid leukemia cell development by activating MCL-1. Am J Transl Res 2021; 13:2308-2319. [PMID: 34017391 PMCID: PMC8129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Acute myeloid leukemia (AML) is regarded as a fatal cancer in the world. The overall survival in adult patients with AML is still poor. As lysine demethylases, the KDM4 family is found highly expressed in many kinds of tumors. In this study, we demonstrate that KDM4D is overexpressed in AML and knockdown of KDM4D not only inhibits the proliferation of AML cells, but also induces cell cycle arrest and apoptosis. Furthermore, our research shows that KDM4D can regulate the expression of MCL-1 by demethylating H3K9me3 at the promoter region in AML cells. Besides, we find that high expression of KDM4D is correlated with poor overall survival in AML patients. Taken together, our study demonstrated that KDM4D can promote MCL-1 expression in AML and may serve as a novel target for the treatment of AML.
Collapse
Affiliation(s)
- Wei Wu
- Department of Hepatopancreatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyGusao Tree Road No. 16 of Jianghan District, Wuhan 430000, Hubei Province, China
| | - Xiaonian Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430040, China
| | - Luxia Mo
- Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| |
Collapse
|
21
|
Abstract
Introduction: Management of acute myeloid leukemia (AML) continues to be a therapeutic challenge despite significant recent advancements. Dysregulation of several components of apoptotic pathways has been identified as potential driver in AML. Areas covered: Overexpression of anti-apoptotic proteins, B-cell lymphoma 2 (BCL2), BCL-XL, and myeloid cell leukemia-1 (MCL1), has been associated with worse outcome in AML. Dysfunction of p53 pathway (often through mouse double minute 2 homolog (MDM2)) and high expression of inhibitor of apoptosis proteins (IAP) constitute other disruptions of apoptotic machinery. Significant antileukemic activity of BCL2 inhibitors (particularly venetoclax) in preclinical models has translated into improved objective response and overall survival in combination with hypomethylating agents in AML. Addition of MCL1, BCL-XL, or MDM2 inhibitors could potentially overcome resistance to BCL2 inhibition. Authors conducted a thorough review of available literature on therapeutic options targeting apoptosis in AML, using PubMed, MEDLINE, meeting abstracts, and ClinicalTrials.gov. Expert opinion: While venetoclax remains the core component of targeting apoptosis, ongoing clinical trials should help find ideal combination regimens in different AML subgroups. Future research should focus on overcoming resistance to BCL2 inhibition, optimal management of adverse events, and development of biomarkers to identify patients most likely to benefit from apoptosis-targeted therapies.
Collapse
Affiliation(s)
- Somedeb Ball
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
22
|
Choi JH, Bogenberger JM, Tibes R. Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond. Target Oncol 2020; 15:147-162. [PMID: 32319019 DOI: 10.1007/s11523-020-00711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease of the hematopoietic system that remains a therapeutic challenge despite advances in our understanding of the underlying cancer biology over the past decade. Recent developments in molecular targeting have shown promising results in treating leukemia, paving the way for novel treatment strategies. The discovery of drugs that promote apoptosis in leukemic cells has translated to encouraging activity in clinical trials. B-cell lymphoma (BCL)-2 inhibition has been at the center of drug development efforts to target apoptosis in AML. Remarkable clinical success with venetoclax has revolutionized the ways we treat hematological malignancies. Several landmark trials have demonstrated the potent antitumor activity of venetoclax, and it is now frequently combined with traditional cytotoxic agents to treat AML. However, resistance to BCL-2 inhibition is emerging, and alternative strategies to address resistance mechanisms have become an important focus of research. A number of clinical trials are now underway to investigate a plurality of novel agents that were shown to overcome resistance to BCL-2 inhibition in preclinical models. Some of the most promising data come from studies on drugs that downregulate myeloid cell leukemia (MCL)-1, such as cyclin-dependent kinases (CDK) inhibitors. Furthermore, innovative approaches to target apoptosis via extrinsic pathways and p53 regulation have added new cytotoxic agents to the arsenal, including drugs that inhibit inhibitor of apoptosis protein (IAP) family proteins and murine double minute 2 (MDM2). This review provides a perspective on past and current treatment strategies harnessing various mechanisms of apoptosis to target AML and highlights some important promising treatment combinations in development.
Collapse
Affiliation(s)
- Jun H Choi
- Division of Hematology and Medical Oncology, New York University School of Medicine and Perlmutter Comprehensive Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Raoul Tibes
- Division of Hematology and Medical Oncology, New York University School of Medicine and Perlmutter Comprehensive Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
23
|
A compound combination screening approach with potential to identify new treatment options for paediatric acute myeloid leukaemia. Sci Rep 2020; 10:18514. [PMID: 33116257 PMCID: PMC7595190 DOI: 10.1038/s41598-020-75453-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by genetics and morphology. The introduction of intensive chemotherapy treatments together with patient stratification and supportive therapy has resulted in a moderate improvement in patient prognosis. However, overall survival rates remain unacceptably poor, with only 65% of patients surviving longer than 5 years. Recently age-specific differences in AML have been identified, highlighting the need for tailored treatments for paediatric patients. Combination therapies have the potential to improve patient prognosis, while minimising harmful side-effects. In the laboratory setting, identifying key combinations from large drug libraries can be resource-intensive, prohibiting discovery and translation into the clinic. To minimise redundancy and maximise discovery, we undertook a multiplex screen of 80 apoptotic-inducing agents in paediatric AML pre-clinical models. The screen was designed using an all-pairs testing algorithm, which ensured that all pairs of compounds could be tested, while minimising the number of wells used. We identified a combination of ABT-737, a Bcl-2 family inhibitor and Purvalanol A, a CDK inhibitor, as a potential targeted therapy for AML patients with an MLL rearrangement and an FLT3-ITD. Our approach has the potential to reduce resource-intensity and time associated with the identification of novel combination therapies.
Collapse
|
24
|
Richters A, Doyle SK, Freeman DB, Lee C, Leifer BS, Jagannathan S, Kabinger F, Koren JV, Struntz NB, Urgiles J, Stagg RA, Curtin BH, Chatterjee D, Mathea S, Mikochik PJ, Hopkins TD, Gao H, Branch JR, Xin H, Westover L, Bignan GC, Rupnow BA, Karlin KL, Olson CM, Westbrook TF, Vacca J, Wilfong CM, Trotter BW, Saffran DC, Bischofberger N, Knapp S, Russo JW, Hickson I, Bischoff JR, Gottardis MM, Balk SP, Lin CY, Pop MS, Koehler AN. Modulating Androgen Receptor-Driven Transcription in Prostate Cancer with Selective CDK9 Inhibitors. Cell Chem Biol 2020; 28:134-147.e14. [PMID: 33086052 DOI: 10.1016/j.chembiol.2020.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors. Further optimization resulted in KB-0742, an orally bioavailable, selective CDK9 inhibitor with potent anti-tumor activity in CRPC models. In 22Rv1 cells, KB-0742 rapidly downregulates nascent transcription, preferentially depleting short half-life transcripts and AR-driven oncogenic programs. In vivo, oral administration of KB-0742 significantly reduced tumor growth in CRPC, supporting CDK9 inhibition as a promising therapeutic strategy to target AR dependence in CRPC.
Collapse
Affiliation(s)
- André Richters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shelby K Doyle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Becky S Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sajjeev Jagannathan
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Florian Kabinger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jošt Vrabič Koren
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas B Struntz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julie Urgiles
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Boston, MA 02115, USA
| | - Ryan A Stagg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Brice H Curtin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deep Chatterjee
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | | | | | | | - Hua Gao
- Kronos Bio, Inc., Cambridge, MA 02139, USA
| | | | - Hong Xin
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Lori Westover
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Brent A Rupnow
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Kristen L Karlin
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Calla M Olson
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | - Stefan Knapp
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Joshua W Russo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ian Hickson
- Janssen Research & Development, LLC, Spring House, PA, USA; Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | - Steven P Balk
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles Y Lin
- Kronos Bio, Inc., Cambridge, MA 02139, USA; Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
26
|
Wilde L, Ramanathan S, Kasner M. B-cell lymphoma-2 inhibition and resistance in acute myeloid leukemia. World J Clin Oncol 2020; 11:528-540. [PMID: 32879842 PMCID: PMC7443828 DOI: 10.5306/wjco.v11.i8.528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Spurred by better understanding of disease biology, improvements in molecular diagnostics, and the development of targeted therapies, the treatment of acute myeloid leukemia (AML) has undergone significant evolution in recent years. Arguably, the most exciting shift has come from the success of treatment with the B-cell lymphoma-2 inhibitor venetoclax. When given in combination with a hypomethylating agent or low dose cytarabine, venetoclax demonstrates high response rates, some of which are durable. In spite of this, relapses after venetoclax treatment are common, and much interest exists in elucidating the mechanisms of resistance to the drug. Alterations in leukemic stem cell metabolism have been identified as a possible escape route, and clinical trials focusing on targeting metabolism in AML are ongoing. This review article highlights current research regarding venetoclax treatment and resistance in AML with a focus on cellular metabolism.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Sabarina Ramanathan
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Margaret Kasner
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| |
Collapse
|
27
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis 2020; 11:556. [PMID: 32699213 PMCID: PMC7376237 DOI: 10.1038/s41419-020-02760-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
MCL1 is an important antiapoptotic member of the BCL-2 family that is distinguishable from other family members based on its relatively short half-life. Emerging studies have revealed the crucial role of MCL1 in the chemoresistance of cancer cells. The antiapoptotic function of MCL1 makes it a popular therapeutic target, although specific inhibitors have begun to emerge only recently. Notably, emerging studies have reported that several E3 ligases and deubiquitinases modulate MCL1 stability, providing an alternate means of targeting MCL1 activity. In addition, the emergence and development of proteolysis-targeting chimeras, the function of which is based on ubiquitination-mediated degradation, has shown great potential. In this review, we provide an overview of the studies investigating the ubiquitination and deubiquitination of MCL1, summarize the latest evidence regarding the development of therapeutic strategies targeting MCL1 in cancer treatment, and discuss the promising future of targeting MCL1 via the ubiquitin–proteasome system in clinical practice.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|