1
|
Doosti Z, Ebrahimi SO, Ghahfarokhi MS, Reiisi S. Synergistic effects of miR-143 with miR-99a inhibited cell proliferation and induced apoptosis in breast cancer. Biotechnol Appl Biochem 2024; 71:993-1004. [PMID: 38689536 DOI: 10.1002/bab.2592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) is the most common cancer type and the fifth leading cause of cancer-related deaths. The primary goals of BC treatment are to remove the tumor and prevent metastasis. Despite advances in BC treatment, more effective therapies are required. miRNAs can regulate many targets involved in biological processes and tumor progression; these molecules have emerged as a promising cancer treatment strategy. In the present study, we investigated the effects of miR-99a and miR-143 in single expression plasmids for BC inhibition. In this study, the precursor structure of miRNAs in the expression vector pEGFP-N1 entered single and double states, and MCF7 and T47D cells were transfected. The miRNAs expression level after transfection was then measured using qPCR. The MultiMiR package was used to obtain predicted and validated miRNA targets. MTT assay, qRT-PCR, migration test, and flow cytometry were used to assess the effect of miRNA and gene modulation. The qPCR results revealed that miRNA constructs were significantly expressed after the transfection of both cell lines. The biological function of miRNAs showed that upregulation of miR-99a and miR-143 in any of the two selected BC cells inhibited their proliferation and migration rate, significantly inducing apoptosis (p < 0.01). Also, miR-99a/miR-143 co-treatment has a synergistic anticancer effect in cancer cells via Akt1 and CDK6 targeting. These findings suggest that miR-99a/miR-143 plays synergistic regulatory roles in BC, possibly via a shared signaling pathway, providing a therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Zahra Doosti
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Syed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Wu H, Wang W, Zhang Y, Chen Y, Shan C, Li J, Jia Y, Li C, Du C, Cai Y, Zhang Y, Zhang S, Wu F. Establishment of patient-derived organoids for guiding personalized therapies in breast cancer patients. Int J Cancer 2024; 155:324-338. [PMID: 38533706 DOI: 10.1002/ijc.34931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer has become the most commonly diagnosed cancer. The intra- and interpatient heterogeneity induced a considerable variation in treatment efficacy. There is an urgent requirement for preclinical models to anticipate the effectiveness of individualized drug responses. Patient-derived organoids (PDOs) can accurately recapitulate the architecture and biological characteristics of the origin tumor, making them a promising model that can overtake many limitations of cell lines and PDXs. However, it is still unclear whether PDOs-based drug testing can benefit breast cancer patients, particularly those with tumor recurrence or treatment resistance. Fresh tumor samples were surgically resected for organoid culture. Primary tumor samples and PDOs were subsequently subjected to H&E staining, immunohistochemical (IHC) analysis, and whole-exome sequencing (WES) to make comparisons. Drug sensitivity tests were performed to evaluate the feasibility of this model for predicting patient drug response in clinical practice. We established 75 patient-derived breast cancer organoid models. The results of H&E staining, IHC, and WES revealed that PDOs inherited the histologic and genetic characteristics of their parental tumor tissues. The PDOs successfully predicted the patient's drug response, and most cases exhibited consistency between PDOs' drug susceptibility test results and the clinical response of the matched patient. We conclude that the breast cancer organoids platform can be a potential preclinical tool used for the selection of effective drugs and guided personalized therapies for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Huizi Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yinxi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Changyou Shan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yiwei Jia
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Sutherland L, Lang J, Gonzalez-Juarbe N, Pickett BE. Secondary Analysis of Human Bulk RNA-Seq Dataset Suggests Potential Mechanisms for Letrozole Resistance in Estrogen-Positive (ER+) Breast Cancer. Curr Issues Mol Biol 2024; 46:7114-7133. [PMID: 39057065 PMCID: PMC11275280 DOI: 10.3390/cimb46070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is common among postmenopausal women and is frequently treated with Letrozole, which inhibits aromatase from synthesizing estrogen from androgens. Decreased estrogen slows the growth of tumors and can be an effective treatment. The increase in Letrozole resistance poses a unique problem for patients. To better understand the underlying molecular mechanism(s) of Letrozole resistance, we reanalyzed transcriptomic data by comparing individuals who responded to Letrozole therapy (responders) to those who were resistant to treatment (non-responders). We identified SOX11 and S100A9 as two significant differentially expressed genes (DEGs) between these patient cohorts, with "PLK1 signaling events" being the most significant signaling pathway. We also identified PRDX4 and E2F8 gene products as being the top mechanistic transcriptional markers for ER+ treatment resistance. Many of the significant DEGs that we identified play a known role in ER+ breast cancer or other types of cancer, which partially validate our results. Several of the gene products we identified are novel in the context of ER+ breast cancer. Many of the genes that we identified warrant further research to elucidate the more specific molecular mechanisms of Letrozole resistance in this patient population and could potentially be used as prognostic markers with further wet lab validation. We anticipate that these findings could contribute to improved detection and therapeutic outcomes in aromatase-resistant ER+ breast cancer patients.
Collapse
Affiliation(s)
- Lincoln Sutherland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Jacob Lang
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Norberto Gonzalez-Juarbe
- J. Craig Venter Institute, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| |
Collapse
|
4
|
Abolhasanzadeh N, Sarabandi S, Dehghan B, Karamad V, Avci CB, Shademan B, Nourazarian A. Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Front Immunol 2024; 15:1333563. [PMID: 38807590 PMCID: PMC11130376 DOI: 10.3389/fimmu.2024.1333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer stands as the most prevalent form of cancer among women globally, influenced by a combination of genetic and environmental factors. Recent studies have investigated changes in microRNAs (miRNAs) during breast cancer progression and the potential impact of environmental chemicals on miRNA expression. This review aims to provide an updated overview of miRNA alterations in breast cancer and to explore their potential association with environmental chemicals. We will discuss the current knowledge on dysregulated miRNAs in breast cancer, including both upregulated and downregulated miRNAs. Additionally, we will review the influence of environmental chemicals, such as endocrine-disrupting compounds, heavy metals, and air pollutants, on miRNA expression and their potential contribution to breast cancer development. This review aims to advance our understanding of the complex molecular mechanisms underlying miRNA dysregulation in breast cancer by comprehensively examining miRNA alterations and their association with environmental chemicals. This knowledge is crucial for the development of targeted therapies and preventive measures. Furthermore, identifying specific miRNAs affected by environmental chemicals may allow the prediction of individual susceptibility to breast cancer and the design of personalized intervention strategies.
Collapse
Affiliation(s)
- Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sajed Sarabandi
- Department of Computer Science Leiden University, Leiden, Netherlands
| | - Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
5
|
Li Y, Guo QJ, Chen R, Zhao L, Cui X, Deng Y, Luo YS. Crocin Combined with Cisplatin Regulates Proliferation, Apoptosis, and EMT of Gastric Cancer Cells via the FGFR3/MAPK/ERK Pathway In vitro and In vivo. Curr Cancer Drug Targets 2024; 24:835-845. [PMID: 37718528 DOI: 10.2174/1568009624666230915111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Cisplatin (DDP)-based chemotherapy remains the main therapeutic strategy for human gastric cancer (GC). Combination therapy with Chinese medicine monomers and DDP has been investigated as a means to enhance the anti-tumor effect of DDP while reducing toxicity. MATERIAL AND METHODS Previous studies have shown that crocin combined with DDP can inhibit the apoptosis of BG-823 GC cells. However, the mechanism of this combination therapy in inhibiting GC is not fully unclear. In this study, we measured the IC50 values of crocin combined with DDP in AGS cells and assessed its effect on cell proliferation using an MTT assay. Furthermore, we assessed apoptosis, cell migration, and EMT-related protein levels by using flow cytometry, scratch assay, and Western blotting, respectively. Our results showed that crocin combined with DDP inhibited the proliferation, induced apoptosis, and inhibited invasion and EMT. Next, we performed RNA sequence and KEGG enrichment analysis on GC cells treated with Crocin+DDP. RESULTS The results showed that the most significant factor down-regulated by this combination therapy was Fibroblast growth factor receptor 3 (FGFR3) expression and that a differential gene was enriched in the MAPK/ERK pathway. We further constructed an FGFR3 OE transfection plasmid to overexpress FGFR3 and evaluate its effects on proliferation, apoptosis, migration, EMT, and MAPK/ERK pathway proteins in GC cells. We also conducted subcutaneous tumorigenesis experiments in nude mice to evaluate the effects of crocin and DDP on the progression of GC xenografts in vivo. Finally, we performed a rescue experiment using the MAPK/ERK pathway inhibitor PD184352. CONCLUSION Our results showed that up-regulation of FGFR3 reversed the inhibitory effect of crocin+DDP on the MAPK/ERK signaling pathway. Still, this effect could be counteracted by PD184352, which simultaneously regulated the proliferation, apoptosis, and EMT of AGS cells. In conclusion, crocin, combined with DDP, inhibits proliferation, apoptosis, and EMT of GC through the FRFR3/MAPK/ERK pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Qi-Jing Guo
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| | - Rong Chen
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - LingLin Zhao
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| | - Xianshu Cui
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Yingfang Deng
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Yu-Shuang Luo
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| |
Collapse
|
6
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
7
|
Al-Zahrani MH, Assidi M, Pushparaj PN, Al-Maghrabi J, Zari A, Abusanad A, Buhmeida A, Abu-Elmagd M. Expression pattern, prognostic value and potential microRNA silencing of FZD8 in breast cancer. Oncol Lett 2023; 26:477. [PMID: 37809047 PMCID: PMC10551865 DOI: 10.3892/ol.2023.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Breast cancer (BC) is one of the most widespread types of cancer affecting females, and therefore, early diagnosis is critical. BC is a complex heterogeneous disease affected by several key pathways. Among these, WNT proteins and their frizzled receptors (FZD) have been demonstrated to be crucial in regulating a number of cellular and molecular events in BC tumorigenesis. The role of the WNT receptor, FZD8, in BC has received minimal attention; for that reason, the present study examined the prognostic value of its protein expression pattern in a BC cohort. FZD8 cytoplasmic expression pattern analysis revealed that ~38% of the primary samples presented with a high expression profile, whereas ~63% of the samples had a low expression profile. Overall, ~46% of the malignant tissues in the lymph node-positive samples exhibited an increased FZD8 cytoplasmic expression, whereas 54% exhibited low expression levels. An increased expression of FZD8 was associated with several clinicopathological characteristics of the patients, including a low survival rate, tumor vascular invasion, tumor size and grade, and molecular subtypes. Affymetrix microarray triple-negative BC datasets were analyzed and compared with healthy breast tissues in order to predict the potential interfering microRNAs (miRNAs) in the WNT/FZD8 signaling pathway. A total of 29 miRNAs with the potential to interact with the WNT/FZD8 signaling pathway were identified, eight of which exhibited a significant prediction score. The target genes for each predicted miRNA were identified. On the whole, the findings of the present study suggest that FZD8 is a potential prognostic marker for BC, shedding some light onto the silencing mechanisms involved in the complex BC signaling.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Ali Zari
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atlal Abusanad
- Department of Medicine, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Ning S, Chen Y, Li S, Liu M, Liu H, Ye M, Wang C, Pan J, Wei W, Li J, Zhang L. Exosomal miR-99b-5p Secreted from Mesenchymal Stem Cells Can Retard the Progression of Colorectal Cancer by Targeting FGFR3. Stem Cell Rev Rep 2023; 19:2901-2917. [PMID: 37653181 DOI: 10.1007/s12015-023-10606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Human bone marrow mesenchymal stem cells (BMSCs) are efficient mass producers of exosomes that can potentially be utilized for delivery of miRNAs in cancer therapy. The current study aimed to assess the role of MSC-exosomal miR-99b-5p during the development of colorectal cancer (CRC). The potential value of using plasma levels of exosomal miR-99b-5p for predicting the liver metastasis of colorectal cancer was also assessed. In this study, we found that overexpression of fibroblast growth factor receptor 3 (FGFR3) was associated with tumor progression in CRC and FGFR3 was the target gene of miR-99b-5p, which was down-regulated in CRC tissues. Furthermore, we observed that elevated miR-99b-5p inhibited CRC cell proliferation, invasion and migration, while reduced levels had the opposite effect on CRC cells. Moreover, exosomal miR-99b-5p delivered by BMSCs was able to limit the proliferation, invasion and migration of CRC cells in vitro, as well as suppressing tumor growth in vivo. Collectively, these findings revealed that MSC-derived exosomal miR-99b-5p can be transferred into CRC cells and which can suppress tumor progression by targeting FGFR3. This highlights the potential of using exosomal miR-99b-5p as a novel diagnostic marker for CRC, while providing a therapeutic target to combat CRC.
Collapse
Affiliation(s)
- Shufang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yusha Chen
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shirong Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengshu Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengling Ye
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Chen Wang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jinmiao Pan
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Wene Wei
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Litu Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
9
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
10
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
The Role of Different Types of microRNA in the Pathogenesis of Breast and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24031980. [PMID: 36768298 PMCID: PMC9916830 DOI: 10.3390/ijms24031980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Micro ribonucleic acids (microRNAs or miRNAs) form a distinct subtype of non-coding RNA and are widely recognized as one of the most significant gene expression regulators in mammalian cells. Mechanistically, the regulation occurs through microRNA binding with its response elements in the 3'-untranslated region of target messenger RNAs (mRNAs), resulting in the post-transcriptional silencing of genes, expressing target mRNAs. Compared to small interfering RNAs, microRNAs have more complex regulatory patterns, making them suitable for fine-tuning gene expressions in different tissues. Dysregulation of microRNAs is well known as one of the causative factors in malignant cell growth. Today, there are numerous data points regarding microRNAs in different cancer transcriptomes, the specificity of microRNA expression changes in various tissues, and the predictive value of specific microRNAs as cancer biomarkers. Breast cancer (BCa) is the most common cancer in women worldwide and seriously impairs patients' physical health. Its incidence has been predicted to rise further. Mounting evidence indicates that microRNAs play key roles in tumorigenesis and development. Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men. Different microRNAs play an important role in PCa. Early diagnosis of BCa and PCa using microRNAs is very useful for improving individual outcomes in the framework of predictive, preventive, and personalized (3P) medicine, thereby reducing the economic burden. This article reviews the roles of different types of microRNA in BCa and PCa progression.
Collapse
|
12
|
Ren J, Yu H, Li W, Jin X, Yan B. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer. Br J Cancer 2023; 128:232-244. [PMID: 36396821 PMCID: PMC9902481 DOI: 10.1038/s41416-022-02058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cisplatin-based cytotoxic chemotherapy is considered to be the first-line therapy for advanced bladder cancer (BC), but resistance to cisplatin limits its antitumor effect. Fibroblast growth factor receptor 3 (FGFR3) has been reported to contribute to the progression and cisplatin resistance of BC. Meanwhile, chromobox protein homologue 7 (CBX7) was reported to inhibit BC progression. And our previous RNA-seq data on CBX7 (GSE185630) suggested that CBX7 might repress FGFR3, but the underlying mechanism and other cancer-related functions of CBX7 are still unknown. METHODS Silico analysis of RNA-seq data to identify the upstream regulators and downstream target genes of CBX7. The western blot analysis, quantitative real-time PCR (RT-qPCR), chromatin immunoprecipitation (ChIP)-qPCR analysis, CCK-8 assay, and nude mice xenograft models were used to confirm the enhancer of zeste homologue (EZH2)/CBX7/ FGFR3 axis. RESULTS In this study, we first showed that CBX7 is downregulated in BC. Then, we revealed that EZH2 represses CBX7 expression by increasing H3K27me3 in BC cells. Moreover, we demonstrated that CBX7 directly downregulates FGFR3 expression and sensitises BC cells to cisplatin treatment by inactivating the phosphatidylinositol 3-kinase (PI3K)-(RAC-alpha serine/threonine-protein kinase) AKT signalling pathway. CONCLUSIONS These results suggest that CBX7 is an ideal candidate to overcome cisplatin resistance in BC.
Collapse
Affiliation(s)
- Jiannan Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
13
|
Boutilier AJ, Huang L, Elsawa SF. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Int J Mol Sci 2022; 23:11145. [PMID: 36232447 PMCID: PMC9569492 DOI: 10.3390/ijms231911145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure. The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglobulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM, Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues of tumor progression and targeted drug therapy that have been investigated in WM and related B-cell lymphomas.
Collapse
Affiliation(s)
- Ava J. Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
14
|
Tian X, Yang H, Fang Q, Quan H, Lu H, Wang X. Circ_ZFR affects FABP7 expression to regulate breast cancer progression by acting as a sponge for miR-223-3p. Thorac Cancer 2022; 13:1369-1380. [PMID: 35355424 PMCID: PMC9058297 DOI: 10.1111/1759-7714.14401] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a common malignancy in women. Circular RNAs (circRNAs) have been reported to play a key role in the development of BC; however, the effect of circular RNA zinc finger RNA binding protein (circ_ZFR) in BC is unknown. METHODS Abundances of circ_ZFR, fatty acid binding protein 7 (FABP7), and microRNA-223-3p (miR-223-3p) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The circular structure of circ_ZFR was validated by RNase R treatment. Cell proliferation, migration, invasion, and apoptosis were assessed by colony formation, cell counting kit-8, Transwell, flow cytometry assays, respectively. All protein levels were determined by Western blot. Dual-luciferase reporter assay was used to confirm the relationship between miR-223-3p and circ_ZFR or FABP7. A xenograft model was established to understand the effect of circ_ZFR on BC cell growth in vivo. RESULTS The expression levels of circ_ZFR and FABP7 were higher in BC tissues and cell lines, whereas miR-223-3p expression was lower. Knockdown of circ_ZFR or FABP7 in BC cells reduced proliferation, migration, invasion, and epithelial mesenchymal transition (EMT), and induced apoptosis in vitro, whereas the opposite effects were observed in circ_ZFR-overexpressed cells. Furthermore, circ_ZFR might act as a sponge for miR-223-3p to regulate FABP7 expression, thereby promoting the progression of BC cells in vitro and in vivo. CONCLUSION Circ_ZFR might act as a miRNA sponge for miR-223-3p to regulate FABP7, thereby promoting proliferation, migration, invasion, and EMT of BC cells, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Xiuling Tian
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hong Yang
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Qian Fang
- Department of General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hongmei Quan
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hongyu Lu
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xin Wang
- Department of General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
15
|
Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022; 10:biomedicines10030651. [PMID: 35327452 PMCID: PMC8945552 DOI: 10.3390/biomedicines10030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.
Collapse
|
16
|
Tamai M, Tatarano S, Okamura S, Fukumoto W, Kawakami I, Osako Y, Sakaguchi T, Sugita S, Yonemori M, Yamada Y, Nakagawa M, Enokida H, Yoshino H. microRNA-99a-5p induces cellular senescence in gemcitabine-resistant bladder cancer by targeting SMARCD1. Mol Oncol 2022; 16:1329-1346. [PMID: 35148461 PMCID: PMC8936529 DOI: 10.1002/1878-0261.13192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Patients with advanced bladder cancer are generally treated with a combination of chemotherapeutics, including gemcitabine, but the effect is limited due to acquisition of drug resistance. Thus, in this study, we investigated the mechanism of gemcitabine resistance. First, gemcitabine‐resistant cells were established and resistance confirmed in vitro and in vivo. Small RNA sequencing analyses were performed to search for miRNAs involved in gemcitabine resistance. miR‐99a‐5p, selected as a candidate miRNA, was downregulated compared to its parental cells. In gain‐of‐function studies, miR‐99a‐5p inhibited cell viabilities and restored sensitivity to gemcitabine. RNA sequencing analysis was performed to find the target gene of miR‐99a‐5p. SMARCD1 was selected as a candidate gene. Dual‐luciferase reporter assays showed that miR‐99a‐5p directly regulated SMARCD1. Loss‐of‐function studies conducted with si‐RNAs revealed suppression of cell functions and restoration of gemcitabine sensitivity. miR‐99a‐5p overexpression and SMARCD1 knockdown also suppressed gemcitabine‐resistant cells in vivo. Furthermore, β‐galactosidase staining showed that miR‐99a‐5p induction and SMARCD1 suppression contributed to cellular senescence. In summary, tumor‐suppressive miR‐99a‐5p induced cellular senescence in gemcitabine‐resistant bladder cancer cells by targeting SMARCD1.
Collapse
Affiliation(s)
- Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Issei Kawakami
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
17
|
Shommo G, Apolloni B. A holistic miRNA-mRNA module discovery. Noncoding RNA Res 2021; 6:159-166. [PMID: 34703956 PMCID: PMC8521321 DOI: 10.1016/j.ncrna.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The regulatory role of the Micro-RNAs (miRNAs) in the messenger RNAs (mRNAs) gene expression is well understood by the biologists since some decades, even though the delving into specific aspects is in progress. In this paper we will focus on miRNA-mRNA modules, where regulation jointly occurs in miRNA-mRNA pairs. Namely, we propose a holistic procedure to identify miRNA-mRNA modules within a population of candidate pairs. Since current methods still leave open issues, we adopt the strategy of postponing any decision on the value of the module ingredients exactly at the end, i.e. at the moment of biologically exploiting the results. This diverts chains of statistical tests into sequences of specially-devised-evolving metrics on the possible solutions. This strategy is rather expensive under a computational perspective, so needing implementations on HPC. The reward stands in the discovery of new modules, possibly hosting non differentially expressed miRNAs and mRNAs and pairs containing genes that currently are considered not targeted. In the paper we implement the procedure on a Multiple Myeloma dataset publicly available on GEO platform, as a template of a cancer instance analysis, and hazard some biological issues. These results, jointly with the normal manageability of the computations, suggest that the discovery procedure may be profitably extended to a wide spectrum of diseases where miRNA-mRNA interactions play a relevant role.
Collapse
Affiliation(s)
- Ghada Shommo
- Sudan University of Science and Technology, Department of Information Technology and Computer Science, Sudan
| | - Bruno Apolloni
- Department of Computer Science, Via Comelico 39/41, 20135, Milano, Italy
| |
Collapse
|
18
|
Zhang JT, Chen J, Ruan HC, Li FX, Pang S, Xu YJ, Huang DL, Wu XH. Microribonucleic Acid-15a-5p Alters Adriamycin Resistance in Breast Cancer Cells by Targeting Cell Division Cycle-Associated Protein 4. Cancer Manag Res 2021; 13:8425-8434. [PMID: 34785950 PMCID: PMC8590962 DOI: 10.2147/cmar.s333830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Although chemotherapy is one of the first line clinical treatment of tumors, the efficacy of chemotherapy has been severely restricted by the frequent occurrence of drug resistance phenomenon. Multiple studies found that miRNAs can regulate the chemosensitivity of tumor cells. Here, this study aimed to assess the potential role of the miR-15a-5p/cell division cycle-related protein 4 (CDCA4) axis in breast cancer (BC) resistance to Adriamycin. Methods In the present study, the relative expression of miRNA-15a-5p in MCF-7/ADR, MCF-7 and Hs578Bst was measured by qRT-PCR. MCF-7/ADR cells underwent transfection with an miR-15a-5p mimic and inhibitor, respectively. Transwell assays, flow cytometry and CCK8 were performed to examine the potential effects of the abnormal expression of miR-15a-5p. The association of aberrant miR-15a-5p expression with Adriamycin resistance in BC was determined in cultured MCF-7/ADR cells. Bioinformatics was employed to predict the genes targeted by miR-15a-5p. Moreover, the correlation between miR-15a-5p and its target gene, CDCA4, was evaluated based on qRT-PCR data. Results The expression of miR-15a-5p was significantly downregulated in MCF/ADR cells compared with MCF-7 and Hs578Bst cell lines. In the presence of Adriamycin, miR-15a-5p overexpression significantly increased cell chemosensitivity, as well as MCF-7/ADR cell proliferation, invasion, and migration, while promoting apoptosis and inducing cell-cycle arrest in the synthesis phase. CDCA4 RNA interference enhanced these effects as shown in our previous study. Bioinformatics identified CDCA4 as an miR-15a-5p target gene. qRT-PCR further demonstrated that CDCA4 and miR-15a-5p expression levels were inversely correlated. Conclusion Adriamycin resistance in BC cells was, at least in part, altered by mRNA-15a-5p via regulation of its target gene, CDCA4, by controlling the cell cycle, which may provide some novel ideas for BC chemotherapy in the future.
Collapse
Affiliation(s)
- Jiang-Tao Zhang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun Chen
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, People's Republic of China
| | - Hui-Chao Ruan
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng-Xi Li
- Department of Gastrointestinal Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sen Pang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Ju Xu
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dao-Lai Huang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Hua Wu
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
19
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 2021; 49:705-715. [PMID: 34677714 DOI: 10.1007/s11033-021-06847-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
20
|
Sheinboim D, Parikh S, Parikh R, Menuchin A, Shapira G, Kapitansky O, Elkoshi N, Ruppo S, Shaham L, Golan T, Elgavish S, Nevo Y, Bell RE, Malcov H, Shomron N, Taub JW, Izraeli S, Levy C. Slow transcription of the 99a/let-7c/125b-2 cluster results in differential miRNA expression and promotes melanoma phenotypic plasticity. J Invest Dermatol 2021; 141:2944-2956.e6. [PMID: 34186058 DOI: 10.1016/j.jid.2021.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Almost half of human miRNAs are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. Here, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II (Pol-II) along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of Pol-II transcription elongation, at the let-7c region resulting in Pol-II pausing and causing its elevated expression, whereas low levels of Pol-II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-seq analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs: FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates a MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.
Collapse
Affiliation(s)
- Danna Sheinboim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roma Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amitai Menuchin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oxana Kapitansky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Elkoshi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shmuel Ruppo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Lital Shaham
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Division of Pediatric Hematology-Oncology Department, Schneider Children's Medical Center, Petah Tikva 49202, Israel
| | - Tamar Golan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Rachel E Bell
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Edmond J. Safra Center of Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jeffrey W Taub
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Shai Izraeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
21
|
Insights of fibroblast growth factor receptor 3 aberrations in pan-cancer and their roles in potential clinical treatment. Aging (Albany NY) 2021; 13:16541-16566. [PMID: 34160364 PMCID: PMC8266346 DOI: 10.18632/aging.203175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) alters frequently across various cancer types and is a common therapeutic target in bladder urothelial carcinoma (BLCA) with FGFR3 variants. Although emerging evidence supports the role of FGFR3 in individual cancer types, no pan-cancer analysis is available. In this work, we used the open comprehensive datasets, covering a total of 10,953 patients with 10,967 samples across 32 TCGA cancer types, to identify the full alteration spectrum of FGFR3. FGFR3 abnormal expression, methylation patterns, alteration frequency, mutation location distribution, functional impact, and prognostic implications differed greatly from cancer to cancer. The overall alteration frequency of FGFR3 was relatively low in all cancers. Targetable mutations were mainly detected in BLCA, and S249C, Y373C, G370C, and R248C were hotspot mutations that could be targeted by an FDA approved erdafitinib. Genetic fusions were mainly observed in glioma, followed by BLCA. FGFR3-TACC3 was the most common fusion type which was proposed as novel therapeutic targets in glioma and was targetable with erdafitinib in BLCA. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were two lung cancer subtypes, FGFR3 fusion and hotspot mutation like S249C were observed more commonly in LUSC but not in LUAD. DNA methylation was correlated with the expression of FGFR3 and its downstream genes in some tumors. FGFG3 abnormal expression and alterations exhibited clinical correlations with patient prognosis in several tumors. This work exhibited the full alteration spectrum of FGFR3 and indicated several new clues for their application as potential therapeutic targets and prognostic indicators.
Collapse
|
22
|
de Anda-Jáuregui G, Espinal-Enríquez J, Hernández-Lemus E. Highly connected, non-redundant microRNA functional control in breast cancer molecular subtypes. Interface Focus 2021; 11:20200073. [PMID: 34123357 PMCID: PMC8193465 DOI: 10.1098/rsfs.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a complex, heterogeneous disease at the phenotypic and molecular level. In particular, the transcriptional regulatory programs are known to be significantly affected and such transcriptional alterations are able to capture some of the heterogeneity of the disease, leading to the emergence of breast cancer molecular subtypes. Recently, it has been found that network biology approaches to decipher such abnormal gene regulation programs, for instance by means of gene co-expression networks, have been able to recapitulate the differences between breast cancer subtypes providing elements to further understand their functional origins and consequences. Network biology approaches may be extended to include other co-expression patterns, like those found between genes and non-coding transcripts such as microRNAs (miRs). As is known, miRs play relevant roles in the establishment of normal and anomalous transcription processes. Commodore miRs (cdre-miRs) have been defined as miRs that, based on their connectivity and redundancy in co-expression networks, are potential control elements of biological functions. In this work, we reconstructed miR–gene co-expression networks for each breast cancer molecular subtype, from high throughput data in 424 samples from the Cancer Genome Atlas consortium. We identified cdre-miRs in three out of four molecular subtypes. We found that in each subtype, each cdre-miR was linked to a different set of associated genes, as well as a different set of associated biological functions. We used a systematic literature validation strategy, and identified that the associated biological functions to these cdre-miRs are hallmarks of cancer such as angiogenesis, cell adhesion, cell cycle and regulation of apoptosis. The relevance of such cdre-miRs as actionable molecular targets in breast cancer is still to be determined from functional studies.
Collapse
Affiliation(s)
- Guillermo de Anda-Jáuregui
- Computational Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Cátedras CONACYT for Young Researchers, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Eslami Rasekh M, Hernández Y, Drinan SD, Fuxman Bass J, Benson G. Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences. Nucleic Acids Res 2021; 49:4308-4324. [PMID: 33849068 PMCID: PMC8096271 DOI: 10.1093/nar/gkab224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.
Collapse
Affiliation(s)
| | - Yözen Hernández
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Juan I Fuxman Bass
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gary Benson
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Computer Science, Boston University, Boston, MA 02215, USA
| |
Collapse
|
24
|
Kim R, Kin T. Clinical Perspectives in Addressing Unsolved Issues in (Neo)Adjuvant Therapy for Primary Breast Cancer. Cancers (Basel) 2021; 13:926. [PMID: 33672204 PMCID: PMC7927115 DOI: 10.3390/cancers13040926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023] Open
Abstract
The treatment of primary breast cancer has evolved over the past 50 years based on the concept that breast cancer is a systemic disease, with the escalation of adjuvant and neoadjuvant therapies and de-escalation of breast cancer surgery. Despite the development of these therapies, recurrence with distant metastasis during the 10 years after surgical treatment is observed, albeit infrequently. Recent advances in genomic analysis based on circulating tumor cells and circulating tumor DNA have enabled the development of targeted therapies based on genetic mutations in residual tumor cells. A paradigm shift involving the application of neoadjuvant chemotherapy (NAC) has enabled the prediction of treatment response and long-term prognoses; additional adjuvant chemotherapy targeting remaining tumor cells after NAC improves survival. The activation of antitumor immunity by anticancer agents may be involved in the eradication of residual tumor cells. Elucidation of the manner in which antitumor immunity is induced by anticancer agents and unknown factors, and the overcoming of drug resistance via the targeted eradication of residual tumor cells based on genomic profiles, will inevitably lead to the achievement of 0% distant recurrence and a complete cure for primary breast cancer.
Collapse
Affiliation(s)
- Ryungsa Kim
- Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome, Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
25
|
Li Y, Qin J, He Z, Cui G, Zhang K, Wu B. Knockdown of circPUM1 impedes cell growth, metastasis and glycolysis of papillary thyroid cancer via enhancing MAPK1 expression by serving as the sponge of miR-21-5p. Genes Genomics 2021; 43:141-150. [PMID: 33481227 DOI: 10.1007/s13258-020-01023-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/05/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a crucial class of regulatory RNAs in cancer procession, including papillary thyroid cancer (PTC). Circ-Pumilio 1 (circPUM1) is a novel circRNA with the oncogenic function in ovarian cancer and lung cancer. However, the role of circPUM1 in PTC is undiscovered. OBJECTIVE This study was performed to investigate the biological function and molecular mechanism of circPUM1 in PTC. METHODS CircPUM1 and microRNA-21-5p (miR-21-5p) levels were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular viability and metastasis were measured using Cell Counting Kit 8 (CCK-8) and transwell migration/invasion assay. Glycolysis was evaluated by glucose uptake and lactate production. Associated proteins were examined applying with western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the interaction between circPUM1 or mitogen-activated protein kinase 1 (MAPK1) and miR-21-5p. Moreover, the role of circPUM1 in vivo was explored by xenograft tumor experiment. RESULTS Significantly, circPUM1 was upregulated in PTC tissue samples and cells. Cell growth, metastasis and glycolytic process of PTC cells were all inhibited after downregulation of circPUM1. Besides, circPUM1 could sponge miR-21-5p and MAPK1 was a target gene of miR-21-5p. Furthermore, we found that the anti-cancer effect of circPUM1 knockdown on PTC was partly ascribed to MAPK1 downregulation by upregulating miR-21-5p. Silencing circPUM1 also impeded tumorigenesis of PTC in vivo via miR-21-5p/MAPK1 axis. CONCLUSION These findings suggested that circPUM1 knockdown inhibited MAPK1 expression by targeting miR-21-5p, consequently leading to the repressive effect on PTC progression. CircPUM1 might be a promising target to improve the diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Yanqi Li
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China
| | - Jun Qin
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China
| | - Zhaocai He
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China
| | - Guang Cui
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China
| | - Kun Zhang
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China
| | - Buqiang Wu
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, No. 110, Yan'an South Road, Changzhi, 046000, Shanxi Province, China.
| |
Collapse
|
26
|
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1635. [PMID: 33230974 DOI: 10.1002/wrna.1635] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
27
|
Xie J, Wan Y, Zhang M, Jin Z, Yao Y. Circ_0061825 Acts as a miR-593-3p Sponge to Promote Breast Cancer Progression by Regulating FGFR3 Expression. Cancer Manag Res 2020; 12:11243-11255. [PMID: 33177875 PMCID: PMC7649251 DOI: 10.2147/cmar.s269128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BC) remains the most common malignancy among women. Circular RNAs (circRNAs) have been demonstrated to play important roles in human cancers, including BC. In this study, we sought to identify the precise parts of circ_0061825 (circRNA trefoil factor 1, circ_TFF1) in BC pathogenesis. Methods The expression levels of circ_0061825, miR-593-3p and fibroblast growth factor receptor 3 (FGFR3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Circ_0061825 was characterized using ribonuclease (RNase) R digestion, actinomycin D and subcellular fractionation assays. Cell viability, colony formation, migration, invasion, cell cycle progression and apoptosis were evaluated using Cell Counting Kit-8 (CCK-8), colony formation, wound-healing, transwell and flow cytometry assays, respectively. Targeted relationships among circ_0061825, miR-593-3p and FGFR3 were determined by a dual-luciferase reporter assay. Animal studies were used to assess the impact of circ_0061825 in tumor growth in vivo. Results Our data indicated that circ_0061825 was overexpressed in BC tissues and cells, and it was mainly localized in the cytoplasm of BC cells. Circ_0061825 knockdown hampered BC cell viability, colony formation, migration, invasion, cell cycle progression and enhanced cell apoptosis in vitro and weakened tumor growth in vivo. Mechanistically, circ_0061825 functioned as a molecular sponge of miR-593-3p, and circ_0061825 knockdown repressed BC cell malignant progression in vitro by miR-593-3p. FGFR3 was a direct target of miR-593-3p, and circ_0061825 modulated FGFR3 expression through sponging miR-593-3p. Moreover, miR-593-3p overexpression hindered BC cell malignant progression in vitro by down-regulating FGFR3. Conclusion Our current work provided evidence that circ_0061825, an up-regulated circRNA in BC, regulated BC malignant progression at least in part through targeting the miR-593-3p/FGFR3 axis, illuminating a novel therapeutic target for BC management.
Collapse
Affiliation(s)
- Jiping Xie
- Third Ward of Breast and Thyoid Surgery Department, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, People's Republic of China
| | - Yi Wan
- Third Ward of Breast and Thyoid Surgery Department, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, People's Republic of China
| | - Min Zhang
- Third Ward of Breast and Thyoid Surgery Department, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, People's Republic of China
| | - Zeyu Jin
- Third Ward of Breast and Thyoid Surgery Department, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, People's Republic of China
| | - Yongqiang Yao
- Third Ward of Breast and Thyoid Surgery Department, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, People's Republic of China
| |
Collapse
|
28
|
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, Tanaka T, Hozaka Y, Ohtsuka T, Kijima Y, Seki N. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet 2020; 66:519-534. [PMID: 33177704 DOI: 10.1038/s10038-020-00865-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.
Collapse
Affiliation(s)
- Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadahiro Hirashima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Hiroko Toda
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
29
|
Liu J, Yang L, Fu Q, Liu S. Emerging Roles and Potential Biological Value of CircRNA in Osteosarcoma. Front Oncol 2020; 10:552236. [PMID: 33251132 PMCID: PMC7673402 DOI: 10.3389/fonc.2020.552236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in eukaryotic cells. They have been found to play a vital biological role in the development of human diseases. At present, circRNAs have been involved in the pathogenesis, diagnosis, and targeted treatment of multiple tumors. This article reviews the research progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity or resistance, as well as clinical values, is described in this review. Their categories and functions are generally summarized to facilitate a better understanding of OSA pathogenesis, and findings suggest novel circRNA-based methods may be used to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Duică F, Condrat CE, Dănila CA, Boboc AE, Radu MR, Xiao J, Li X, Creţoiu SM, Suciu N, Creţoiu D, Predescu DV. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front Oncol 2020; 10:591181. [PMID: 33194751 PMCID: PMC7646292 DOI: 10.3389/fonc.2020.591181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention and control has revealed the emergence of new genetic techniques that have improved the understanding of the mechanisms essential for pathology induction and progression. Comprehension of the modifications and individual differences of miRNAs and their interactions in the pathogenesis of gynecological malignancies, together with an understanding of the phenotypic variations have considerably improved the management of the diagnosis and personalized treatment for different forms of cancer. In recent years, miRNAs have emerged as signaling molecules in biological pathways involved in different categories of cancer and it has been demonstrated that these molecules could regulate cancer-relevant processes, our focus being on malignancies of the gynecologic tract. The aim of this paper is to summarize novel research findings in the literature regarding the parts that miRNAs play in cancer-relevant processes, specifically regarding gynecological malignancy, while emphasizing their pivotal role in the disruption of cancer-related signaling pathways.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănila
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Sanda Maria Creţoiu
- Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Obstetrics, Gynecology and Neonatology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
31
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
32
|
Garrido-Cano I, Constâncio V, Adam-Artigues A, Lameirinhas A, Simón S, Ortega B, Martínez MT, Hernando C, Bermejo B, Lluch A, Lopes P, Henrique R, Jerónimo C, Cejalvo JM, Eroles P. Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer. Int J Mol Sci 2020; 21:ijms21197427. [PMID: 33050096 PMCID: PMC7582935 DOI: 10.3390/ijms21197427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p’s deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Anna Adam-Artigues
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Soraya Simón
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Belen Ortega
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Ana Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Paula Lopes
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- COST Action CA15204, 1210 Brussels, Belgium
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| |
Collapse
|
33
|
Pathway Analysis of Selected Circulating miRNAs in Plasma of Breast Cancer Patients: A Preliminary Study. Int J Mol Sci 2020; 21:ijms21197288. [PMID: 33023154 PMCID: PMC7583045 DOI: 10.3390/ijms21197288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs in the circulation of breast cancer (BC) patients have great potential for the early diagnosis, treatment and monitoring of breast cancer. The aim of this preliminary study was to obtain the expression profile of selected miRNAs in the plasma of BC patients that could discriminate BC patients from healthy volunteers and may be useful in early detection of BC. Significantly deregulated miRNAs were evaluated by pathway analysis with the prediction of potential miRNA targets. The study enrolled plasma samples from 65 BC patients and 34 healthy volunteers. Selected miRNAs were screened in pilot testing by the real-time PCR (qPCR) method, and the most appropriate reference genes were selected for normalisation by the geNorm algorithm. In the final testing, we detected miR-99a, miR-130a, miR-484 and miR-1260a (p < 0.05) as significantly up-regulated in the plasma of BC patients. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that all significantly deregulated miRNAs are involved in the Hippo and Transforming Growth Factor-beta (TGF-beta) signalling pathways. Our study confirmed a different profile of selected circulating miRNAs in the plasma of BC patients with an emphasis on some critical points in the analysis process.
Collapse
|
34
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
35
|
Wei M, Yu H, Cai C, Gao R, Liu X, Zhu H. MiR-3194-3p Inhibits Breast Cancer Progression by Targeting Aquaporin1. Front Oncol 2020; 10:1513. [PMID: 32903818 PMCID: PMC7438898 DOI: 10.3389/fonc.2020.01513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the Aquaporin1 (AQP1) aberrant expression may be related to a wide variety of human cancers, including breast cancer (BC). In the present study, we explore the effects and possible mechanism of miR-3194-3p on the biological behaviors of BC. At first, miR-3194-3p is found to modulate AQP1 expression targeting the 3′-UTR using miRNA target prediction algorithms. MiR-3194-3p expression is markedly downregulated, and AQP1 expression is upregulated in BC tissues compared with adjacent normal breast tissues. Moreover, the differential expression of miR-3194-3p and AQP1 are observed in four BC cells with different malignancy degree. Meanwhile, a significant negative correlation between AQP1 and miR-3194-3p expressions in tumor tissues from 30 BC patients is revealed. miR-3194-3p mimic remarkably inhibits cell proliferation, migration, and invasion as well as promotes apoptosis in MDA-MB-231 cells while miR-3194-3p inhibitors exert an opposite role in MCF-7 cells. Dual-luciferase reporter system demonstrates that AQP1 is a direct target gene of miR-3194-3p. Overexpression of AQP1 by pBABE-puro-AQP1 vector partially abrogates the effect of miR-3194-3p mimic in MDA-MB-231 cells. In short, our results suggest that miR-3194-3p suppresses BC cell proliferation, migration, and invasion by targeting AQP1, providing a novel insight into BC tumorigenesis and treatment.
Collapse
Affiliation(s)
- Min Wei
- Clinical Laboratory, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China.,Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cuixia Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Gao
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xuhua Liu
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huimin Zhu
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
36
|
Xia J, Li D, Zhu X, Xia W, Qi Z, Li G, Xu Q. Upregulated miR-665 expression independently predicts poor prognosis of lung cancer and facilitates tumor cell proliferation, migration and invasion. Oncol Lett 2020; 19:3578-3586. [PMID: 32269632 PMCID: PMC7115133 DOI: 10.3892/ol.2020.11457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of global cancer-associated mortality. Aberrant microRNAs (miRs) have been reported to be involved in the pathogenesis of various cancer types. The present study aimed to investigate the expression profile and prognostic value of miR-665 in patients with NSCLC, and to analyze its functional role in tumor progression using NSCLC cells. Reverse transcription-quantitative PCR was used to estimate the expression levels of miR-665. Kaplan-Meier survival curves and Cox regression analysis were performed to evaluate the prognostic value of miR-665. The effects of miR-665 on NSCLC cell proliferation, migration and invasion were examined by cell transfection, and the target gene of miR-665 was explored. miR-665 expression was elevated in the tissue and cell samples of NSCLC. This increased miR-665 expression was associated with lymph node metastasis and TNM stage. An independent association between miR-665 and overall survival was identified in patients with NSCLC. When regulating the expression levels of miR-665 in vitro, NSCLC cell proliferation, migration and invasion were enhanced by overexpression of miR-665, but were inhibited by knockdown of miR-665. The luciferase activity results indicated that the protein tyrosine phosphatase receptor type B (PTPRB) was a direct target of miR-665 in NSCLC cells. The present study provided evidence for the clinical significance of a decreased expression of miR-665 in the prognosis of NSCLC. Upregulation of miR-665 contributed to tumor cell proliferation, migration and invasion by targeting PTPRB, suggesting the potential of miR-665 as a candidate therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Jinbing Xia
- Clinical Laboratory, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Dengping Li
- Department of CT Magnetic Resonance, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xiaoliang Zhu
- Department of Gastrointestinal Surgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Wenying Xia
- Clinical Laboratory, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong 262700, P.R. China
| | - Zhenyong Qi
- Clinical Laboratory, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Guanhua Li
- Department of Respiratory Medicine, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Qian Xu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|