1
|
Ricevuto E, Morgani C, Seri F, Bruera G. PSA as the driving biomarker to manage low- and intermediate-risk prostate cancer patients in clinical practice. Asian J Androl 2024; 26:567-568. [PMID: 39327840 DOI: 10.4103/aja202468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/01/2024] [Indexed: 09/28/2024] Open
Affiliation(s)
- Enrico Ricevuto
- Oncology Territorial Care Unit, S. Salvatore Hospital, University of L'Aquila, L'Aquila 67100, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Celeste Morgani
- Oncology Territorial Care Unit, S. Salvatore Hospital, University of L'Aquila, L'Aquila 67100, Italy
| | - Fabrizia Seri
- Oncology Territorial Care Unit, S. Salvatore Hospital, University of L'Aquila, L'Aquila 67100, Italy
| | - Gemma Bruera
- Oncology Territorial Care Unit, S. Salvatore Hospital, University of L'Aquila, L'Aquila 67100, Italy
| |
Collapse
|
2
|
Russo V, Lallo E, Munnia A, Spedicato M, Messerini L, D’Aurizio R, Ceroni EG, Brunelli G, Galvano A, Russo A, Landini I, Nobili S, Ceppi M, Bruzzone M, Cianchi F, Staderini F, Roselli M, Riondino S, Ferroni P, Guadagni F, Mini E, Peluso M. Artificial Intelligence Predictive Models of Response to Cytotoxic Chemotherapy Alone or Combined to Targeted Therapy for Metastatic Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:4012. [PMID: 36011003 PMCID: PMC9406544 DOI: 10.3390/cancers14164012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tailored treatments for metastatic colorectal cancer (mCRC) have not yet completely evolved due to the variety in response to drugs. Therefore, artificial intelligence has been recently used to develop prognostic and predictive models of treatment response (either activity/efficacy or toxicity) to aid in clinical decision making. In this systematic review, we have examined the ability of learning methods to predict response to chemotherapy alone or combined with targeted therapy in mCRC patients by targeting specific narrative publications in Medline up to April 2022 to identify appropriate original scientific articles. After the literature search, 26 original articles met inclusion and exclusion criteria and were included in the study. Our results show that all investigations conducted on this field have provided generally promising results in predicting the response to therapy or toxic side-effects. By a meta-analytic approach we found that the overall weighted means of the area under the receiver operating characteristic (ROC) curve (AUC) were 0.90, 95% C.I. 0.80-0.95 and 0.83, 95% C.I. 0.74-0.89 in training and validation sets, respectively, indicating a good classification performance in discriminating response vs. non-response. The calculation of overall HR indicates that learning models have strong ability to predict improved survival. Lastly, the delta-radiomics and the 74 gene signatures were able to discriminate response vs. non-response by correctly identifying up to 99% of mCRC patients who were responders and up to 100% of patients who were non-responders. Specifically, when we evaluated the predictive models with tests reaching 80% sensitivity (SE) and 90% specificity (SP), the delta radiomics showed an SE of 99% and an SP of 94% in the training set and an SE of 85% and SP of 92 in the test set, whereas for the 74 gene signatures the SE was 97.6% and the SP 100% in the training set.
Collapse
Affiliation(s)
- Valentina Russo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Eleonora Lallo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Armelle Munnia
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Miriana Spedicato
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Romina D’Aurizio
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Elia Giuseppe Ceroni
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Giulia Brunelli
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Marco Peluso
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| |
Collapse
|
3
|
Bruera G, Pepe F, Malapelle U, Di Staso M, Dal Mas A, Di Giacomo D, Scerbo G, Santilli M, Ciacco E, Simmaco M, Troncone G, Coco C, Giuliante F, Ricevuto E. Intensive multidisciplinary treatment strategies and patient resilience to challenge long-term survival in metastatic colorectal cancer: a case report in real life and clinical practice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1027. [PMID: 34277827 PMCID: PMC8267302 DOI: 10.21037/atm-20-6636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/31/2021] [Indexed: 01/01/2023]
Abstract
In fit metastatic colorectal cancer (MCRC), multidisciplinary treatment strategy integrating intensive FIr-B/FOx triplet chemotherapy associated to bevacizumab and secondary metastasectomies significantly improved clinical outcomes up to progression-free survival (PFS) 17 months and overall survival (OS) 44 months. A non-elderly woman affected by rectal cancer, lymph nodes involvement, synchronous unresectable liver metastases, was treated with first-line FIr-B/FOx integrated with two-stage liver resections, short course radiotherapy, anterior rectal resection, with a PFS 9 months and progression-free interval (PFI) 4 months off-treatment. After progression characterized by single liver and lymph node inferior mesenteric axis metastases, FIr-B/FOx was re-introduced, liver and lymph node resections were performed, with a PFS 8 months and PFI 3 months. FIr-B/FOx was further proposed due to bilateral lung, and liver metastases with stable disease, PFS 8 months. Patient experienced a limiting toxicity syndrome multiple sites (LTS-ms) with G3 diarrhea, G2 asthenia, nausea, requiring irinotecan reduction and 5-fluorouracil discontinuation, and subsequent oxaliplatin discontinuation, due to infusional hypersensitivity reaction. Overall, integrated first-line medical and surgical treatment strategies gained PFS 26 months. Further lines II-V of treatment obtained a combined PFS 28 months: modulated aflibercept/irinotecan, PFS 8 months; panitumumab, PFS 8 months, proposed due to KRAS/NRAS/BRAF wild-type and EGFR c.2156 G>C (p.G719A) mutation, achieving biomarkers reduction, lung, liver, lymph nodes partial responses; regorafenib, PFS 8 months; trifluridine-tipiracil, PFS 4 months and induced an LTS-ms, with febrile G4 leucopenia, G3 neutropenia, thrombocytopenia, asthenia, G2 anemia, diarrhea, hypotension. After 2 months of palliative care, patient died, at OS 58 months, gained by intensive medical/surgical treatments coupled with patient's resilience. To date, selection of tailored medical treatments, according to clinical (age, performance and comorbidity status) and molecular (RAS/BRAF and pharmacogenomic analyses) evaluations, careful monitoring of individual toxicity syndromes, potential integration of metastasectomies, and furthermore individual resilience as patient life priority need to challenge MCRC long-term survival.
Collapse
Affiliation(s)
- Gemma Bruera
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II, Napoli, Italy
| | | | - Mario Di Staso
- Radiotherapy, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, L'Aquila, Italy
| | - Antonella Dal Mas
- Pathology, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, L'Aquila, Italy
| | - Daniela Di Giacomo
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gaia Scerbo
- Pharmacy Unit, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, L'Aquila, Italy
| | - Michela Santilli
- Pharmacy Unit, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, L'Aquila, Italy
| | - Eugenio Ciacco
- Pharmacy Unit, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, L'Aquila, Italy
| | | | | | - Claudio Coco
- Unit of General Surgery, Department of General Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Felice Giuliante
- Unit of Hepatobiliary Surgery, Department of General Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Enrico Ricevuto
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
4
|
Bruera G, Ricevuto E. Pharmacogenomic Assessment of Patients with Colorectal Cancer and Potential Treatments. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:601-617. [PMID: 33235483 PMCID: PMC7678498 DOI: 10.2147/pgpm.s253586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Evolving intensiveness of colorectal cancer (CRC) treatment, including chemotherapeutics and targeted agents associations, in adjuvant and metastatic CRC (MCRC) settings, increased overall survival (OS) with individual variability of toxicity. Pharmacogenomic guidelines recommended pre-treatment identification of at-risk patients suggesting dose adjustment of fluoropyrimidines based on dihydropyrimidine dehydrogenase (DPYD), and irinotecan on UDP glucuronosyl-transferase 1 family polypeptide A1 (UGT1A1) genetic variants, but they are poorly applied in clinical practice. This review highlighted clinically validated pharmacogenetic markers, to underline the need of their implementation in the multidisciplinary molecular board for individual CRC patients in clinical practice. Five clinically relevant DPYD variants with different prevalence impair enzymatic effectiveness and significantly increase toxicity: c.1236 G>A (c.1129–5923 C>G, HapB3), 4.1–4.8%; c.1679 T>G (DPYD*13), c.1905+1G>A (DPYD*2A), c.2846 A>T, c.2194 A>T (DPYD*6) 1% each. c.1679T>G and c.1905+1G>A are most deleterious on DPD effectiveness, moderately reduced in c.1236/HapB3 and c.2846A>T. Cumulatively, these variants explain approximately half of the estimated 10–15% fluoropyrimidine-related gastrointestinal and hematological toxicities due to DPD. Prevalent UGT1A1 gene [TA]7TAA promoter allelic variant UGT1A1*28, characterized by an extra TA repeat, is associated with low transcriptional and reduced enzymatic effectiveness, decreased SN38 active irinotecan metabolite glucuronidation, vs wild-type UGT1A1*1 [A(TA)6TAA]. Homozygote UGT1A1*28 alleles patients are exposed to higher hematological and gastrointestinal toxicities, even more than heterozygote, at >150 mg/m2 dose. Dose reduction is recommended for homozygote variant. Wild-type UGT1A1*28 alleles patients could tolerate increased doses, potentially affecting favorable outcomes. Implementation of up-front evaluation of the five validated DPYD variants and UGT1A1*28 in the multidisciplinary molecular tumor board, also including CRC genetic characterization, addresses potential treatments with fluoropyrimidines and irinotecan associations at proper doses and schedules, particularly for early CRC, MCRC patients fit for intensive regimens or unfit for conventional regimens, requiring treatment modulations, and also for patients who experience severe, unexpected toxicities. Integration of individual evaluation of toxicity syndromes (TS), specifically limiting TS (LTS), an innovative indicator of toxicity burden in individual patients, may be useful to better evaluate relationships between pharmacogenomic analyses with safety profiles and clinical outcomes.
Collapse
Affiliation(s)
- Gemma Bruera
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Enrico Ricevuto
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
5
|
Bruera G, D'Andrilli A, Simmaco M, Guadagni S, Rendina EA, Ricevuto E. Relevance of Pharmacogenomics and Multidisciplinary Management in a Young-Elderly Patient With KRAS Mutant Colorectal Cancer Treated With First-Line Aflibercept-Containing Chemotherapy. Front Oncol 2020; 10:1155. [PMID: 32850329 PMCID: PMC7417602 DOI: 10.3389/fonc.2020.01155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction: Intensive oncological treatment integrated with resection of metastases raised the clinical outcome of metastatic colorectal cancer (MCRC). In clinical practice, complex evaluation of clinical (age, performance status, comorbidities), and biological (tumoral genotype, pharmacogenomic) parameters addresses tailored, personalized multidisciplinary treatment strategies. Patients with MCRC unsuitable for first-line intensive medical treatments are prevalent and showed worse clinical outcome. After progression to oxaliplatin-based chemotherapy, aflibercept/FOLFIRI significantly improved clinical outcome, even if no survival benefit was reported in adjuvant fast relapsers by aflibercept addition. The case reported a young-elderly (yE) patient with KRAS mutant colorectal cancer rapidly progressing to adjuvant chemotherapy, unfit owing to comorbidities, with multiple pharmacogenomic alterations, who gained long-term survival in clinical practice by multidisciplinary treatment strategy consisting of first-line and re-introduction of aflibercept-containing chemotherapy and two-stage lung metastasectomies. Case presentation: A 71-years-old yE patient, unfit for intensive oncological treatments owing to Cumulative Illness Rating Scale (CIRS) stage secondary, affected by KRAS c.35 G>T mutant colorectal cancer, rapidly progressing with lung metastases after adjuvant XelOx chemotherapy, reached long-term survival 66 months with no evidence of disease after first-line and re-introduction of tailored, modulated aflibercept (4 mg/kg) d1,15-irinotecan (120 mg/m2) d1,15-5-fluorouracil (750 mg/m2/day) dd1–4, 15–18; and secondary radical bilateral two-stage lung metastasectomies. Safety profile was characterized by limiting toxicity syndrome at multiple sites (LTS-ms), requiring 5-fluorouracil discontinuation and aflibercept reduction (2 mg/kg), because of G2 hand-foot syndrome (HFS) for >2 weeks, and G3 hypertension. Pharmacogenomic analyses revealed multiple alterations of fluoropyrimidine and irinotecan metabolism: severe deficiency of fluorouracil degradation rate (FUDR), single nucleotide polymorphisms of UGT1A1*28 variable number of tandem repeats (VNTR) 7R/7R homozygote, ABCB1 c.C3435T, c.C1236T, MTHFR c.C667T homozygote, DPYD c.A166G, TSER 28bp VNTR 2R/3R heterozygote. Conclusions: In clinical practice, a complex management evaluating clinical parameters and RAS/BRAF genotype characterizing an individual patient with MCRC, particularly elderly and/or unfit owing to comorbidities, is required to properly address tailored, multidisciplinary medical and surgical treatment strategies, integrated with careful monitoring of superimposing toxicity syndromes, also related to pharmacogenomic alterations, to gain optimal activity, and long-term efficacy.
Collapse
Affiliation(s)
- Gemma Bruera
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio D'Andrilli
- Thoracic Surgery, S. Andrea Hospital, Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy
| | | | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Universitary General Surgery, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy
| | - Erino Angelo Rendina
- Thoracic Surgery, S. Andrea Hospital, Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy
| | - Enrico Ricevuto
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|