1
|
Younes AI, Mejbel HA. GLI1-Rearranged Enteric Tumors: Updates on Clinicopathologic and Molecular Genetics Features. Cells 2025; 14:118. [PMID: 39851545 PMCID: PMC11763425 DOI: 10.3390/cells14020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Recent advances in molecular genetics, particularly in identifying and characterizing genetic abnormalities within mesenchymal neoplasms, have led to a more comprehensive and evolving classification system. Modern technological developments in cytogenetics and next-generation sequencing have enabled the analysis of small clinical samples, expanded our understanding of tumor biology, and improved the diagnostic, prognostic, and predictive precision by identifying targeted genetic alterations, confirming the presence of fusion transcripts, and/or revealing the overexpression of specific genes and their targets. In this review, we focus specifically on the GLI1-rearranged enteric tumor, a recent clinicopathological entity that has emerged within the expanding classification of mesenchymal tumors. Herein, we aim to explore the histopathological features, molecular genetic characteristics, and clinical outcomes in these tumors. Due to their rarity and the extensive overlapping in their histopathological and molecular features with other neoplasms, continued research and systematic documentation of GLI1-rearranged enteric tumors is necessary to better understand their biological behavior, develop more accurate prognostic indicators, and establish optimal treatment strategies.
Collapse
Affiliation(s)
| | - Haider A. Mejbel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
2
|
Wu M, Jahan N, Sharp A, Ullah A, Augelli-Szafran CE, Zhang S, Boohaker RJ. Structure Characterization of Zinc Finger Motif 1 and 2 of GLI1 DNA Binding Region. Int J Mol Sci 2024; 25:13368. [PMID: 39769147 PMCID: PMC11677393 DOI: 10.3390/ijms252413368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule. Here, we reported a novel homodimeric crystal structure of Zif1-2. These two Zif motifs are linearized. Namely, Zif2 does not bend and interact with Zif1 of the same molecule. Instead, Zif1 from one molecule interacts with Zif2 from another molecule. The dimer interface of Zif1-2 is unique and different from the conformation of Zif1-2 from the GLI1-DNA co-crystal structure. The dimeric conformation of Zif motifs could represent the native conformation of apo form GLI1 Zif motifs in the cell. The molecular dynamics simulation result of the homodimer, the in silico mutagenesis, and the predicted protease stability of these mutants using a large language model are also presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Sixue Zhang
- Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (M.W.); (N.J.); (A.S.); (A.U.); (C.E.A.-S.)
| | - Rebecca J. Boohaker
- Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (M.W.); (N.J.); (A.S.); (A.U.); (C.E.A.-S.)
| |
Collapse
|
3
|
Abu Rabe D, Chdid L, Lamson DR, Laudeman CP, Tarpley M, Elsayed N, Smith GR, Zheng W, Dixon MS, Williams KP. Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells. Molecules 2024; 29:3095. [PMID: 38999049 PMCID: PMC11243198 DOI: 10.3390/molecules29133095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.
Collapse
Affiliation(s)
- Dina Abu Rabe
- INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA;
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - David R. Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Christopher P. Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Naglaa Elsayed
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Ginger R. Smith
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Maria S. Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Kevin P. Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
4
|
Zhang R, Peng X, Du JX, Boohaker R, Estevao IL, Grajeda BI, Cox MB, Almeida IC, Lu W. Oncogenic KRASG12D Reprograms Lipid Metabolism by Upregulating SLC25A1 to Drive Pancreatic Tumorigenesis. Cancer Res 2023; 83:3739-3752. [PMID: 37695315 PMCID: PMC10840918 DOI: 10.1158/0008-5472.can-22-2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/24/2022] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Xiaogang Peng
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - James Xianxing Du
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - Rebecca Boohaker
- Oncology Department, Southern Research Institute, Birmingham, Alabama, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Marc B Cox
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
5
|
Miller JS, Bennett NE, Rhoades JA. Targeting hedgehog-driven mechanisms of drug-resistant cancers. Front Mol Biosci 2023; 10:1286090. [PMID: 37954979 PMCID: PMC10634604 DOI: 10.3389/fmolb.2023.1286090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Due to the cellular plasticity that is inherent to cancer, the acquisition of resistance to therapy remains one of the biggest obstacles to patient care. In many patients, the surviving cancer cell subpopulation goes on to proliferate or metastasize, often as the result of dramatically altered cell signaling and transcriptional pathways. A notable example is the Hedgehog (Hh) signaling pathway, which is a driver of several cancer subtypes and aberrantly activated in a wide range of malignancies in response to therapy. This review will summarize the field's current understanding of the many roles played by Hh signaling in drug resistance and will include topics such as non-canonical activation of Gli proteins, amplification of genes which promote tolerance to chemotherapy, the use of hedgehog-targeted drugs and tool compounds, and remaining gaps in our knowledge of the transcriptional mechanisms at play.
Collapse
Affiliation(s)
- Jade S. Miller
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Natalie E. Bennett
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Julie A. Rhoades
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Li X, Sun R, Wu H, Zheng C, Long YQ. Targeting the Hedgehog pathway with novel Gli1 hydrophobic tagging degraders. Bioorg Chem 2023; 138:106649. [PMID: 37307715 DOI: 10.1016/j.bioorg.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
The Hedgehog/Glioma-associated oncogene (Hh/Gli) signaling pathway plays an essential role in embryonic development and tissue homeostasis. Aberrant regulation of this pathway has been linked to various human malignancies. Gli1, the downstream transcription factor of the Hh pathway, is the ultimate effector of the canonical Hh pathway and has been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. Thus Gli1 represents a unique and promising drug target for a wide range of cancers. However, the identification and development of small molecules that directly target Gli1 protein have progressed slowly, due to an insufficient efficacy and selectivity. Herein, we developed novel small-molecule Gli1 degraders based on the hydrophobic tagging (HyT) strategy. The Gli1 HyT degrader 8e potently inhibited the proliferation of Gli1-overexpressed HT29 colorectal cancer cells, induced Gli1 degradation with a DC50 value of 5.4 μM in HT29 and achieved 70% degradation at 7.5 μM in MEFPTCH1-/- and MEFSUFU-/-cell lines, via proteasome pathway. Compared to the canonical Hh antagonist Vismodegib, 8e exhibited much stronger potency in suppressing the mRNA expression of Hh target genes in Hh-overactivated MEFPTCH1-/- and Vismodegib resistant MEFSUFU-/- cells. Our study provides small molecule Gli1 degraders effectively interfering with both canonical and noncanonical Hh signaling and overcoming current Smoothened (SMO) antagonists resistance, which might pave a new avenue for developing therapeutic modalities targeting Hh/Gli1 signaling pathway.
Collapse
Affiliation(s)
- Xiangyang Li
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Rui Sun
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Hao Wu
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chaonan Zheng
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Ya-Qiu Long
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Li L, Zou BJ, Zhao JZ, Liang JB, She ZY, Zhou WY, Lin SX, Tian L, Luo WJ, He FZ. A novel DNA damage repair-related signature for predicting prognositc and treatment response in non-small lung cancer. Front Oncol 2022; 12:961274. [PMID: 36408135 PMCID: PMC9673481 DOI: 10.3389/fonc.2022.961274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/14/2022] [Indexed: 10/06/2023] Open
Abstract
DNA damage repair (DDR) is essential for maintaining genome integrity and modulating cancer risk, progression, and therapeutic response. DDR defects are common among non-small lung cancer (NSCLC), resulting in new challenge and promise for NSCLC treatment. Thus, a thorough understanding of the molecular characteristics of DDR in NSCLC is helpful for NSCLC treatment and management. Here, we systematically analyzed the relationship between DDR alterations and NSCLC prognosis, and successfully established and validated a six-DDR gene prognostic model via LASSO Cox regression analysis based on the expression of prognostic related DDR genes, CDC25C, NEIL3, H2AFX, NBN, XRCC5, RAD1. According to this model, NSCLC patients were classified into high-risk subtype and low-risk subtype, each of which has significant differences between the two subtypes in clinical features, molecular features, immune cell components, gene mutations, DDR pathway activation status and clinical outcomes. The high-risk patients was characterized with worse prognosis, lower proportion and number of DDR mutations, unique immune profile and responsive to immunetherapy. And the low-risk patients tend to have superior survival, while being less responsive to immunotherapy and more sensitive to treatment with DNA-damaging chemotherapy drugs. Overall, this molecular classification based on DDR expression profile enables hierarchical management of patients and personalized clinical treatment, and provides potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Bao-jia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juan-zhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jia-bi Liang
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zi-yue She
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ying Zhou
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Si-xiao Lin
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lin Tian
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ji Luo
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fa-zhong He
- Department of Quality Control, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Manetti F, Maresca L, Crivaro E, Pepe S, Cini E, Singh S, Governa P, Maramai S, Giannini G, Stecca B, Petricci E. Quinolines and Oxazino-quinoline Derivatives as Small Molecule GLI1 Inhibitors Identified by Virtual Screening. ACS Med Chem Lett 2022; 13:1329-1336. [PMID: 35978701 PMCID: PMC9377010 DOI: 10.1021/acsmedchemlett.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
A virtual screening approach based on a five-feature pharmacophoric model for negative modulators of GLI1 was applied to databases of commercially available compounds. The resulting quinoline derivatives showed significant ability to reduce the GLI1 protein level and were characterized by submicromolar antiproliferative activity toward human melanoma A375 and medulloblastoma DAOY cell lines. Decoration of the quinoline ring and chemical rigidification to an oxazino-quinoline scaffold allowed us to deduce SAR considerations for future ligand optimization.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luisa Maresca
- Istituto
per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Enrica Crivaro
- Istituto
per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Sara Pepe
- Istituto
per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Elena Cini
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Snigdha Singh
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Paolo Governa
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Samuele Maramai
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| | | | - Barbara Stecca
- Istituto
per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Elena Petricci
- Dipartimento
di Biotecnologie Chimica e Farmacia, Università
di Siena, via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
9
|
Zhang R, Zhang Y, Qu X. Editorial: Advances in the Molecular Mechanisms in Gastrointestinal Tumorigenesis and Treatment. Front Oncol 2022; 11:827294. [PMID: 35071022 PMCID: PMC8767048 DOI: 10.3389/fonc.2021.827294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruowen Zhang
- Research and Development Department, Jiahe Honsan (Shenzhen) Health Industry Group Co. Ltd., Shenzhen, China
| | - Yu Zhang
- Institute of Biological Science, Jinzhou Medical University, Jinzhou, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Martinez-Balibrea E, Ciribilli Y. Editorial: Transcriptional Regulation as a Key Player in Cancer Cells Drug Resistance. Front Oncol 2021; 11:764506. [PMID: 34765559 PMCID: PMC8576526 DOI: 10.3389/fonc.2021.764506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eva Martinez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE program, Catalan Institute of Oncology, Badalona, Spain
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Research, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
11
|
Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY. Defining the Role of GLI/Hedgehog Signaling in Chemoresistance: Implications in Therapeutic Approaches. Cancers (Basel) 2021; 13:4746. [PMID: 34638233 PMCID: PMC8507559 DOI: 10.3390/cancers13194746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad 10072, Iraq;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
12
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
13
|
Avery JT, Zhang R, Boohaker RJ. GLI1: A Therapeutic Target for Cancer. Front Oncol 2021; 11:673154. [PMID: 34113570 PMCID: PMC8186314 DOI: 10.3389/fonc.2021.673154] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.
Collapse
Affiliation(s)
- Justin T Avery
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| | - Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rebecca J Boohaker
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| |
Collapse
|
14
|
Dusek CO, Hadden MK. Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 2020; 16:289-302. [PMID: 33006903 DOI: 10.1080/17460441.2021.1832078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION GLI1 is a transcription factor that has been identified as a downstream effector for multiple tumorigenic signaling pathways. These include the Hedgehog, RAS-RAF-MEK-ERK, and PI3K-AKT-mTOR pathways, which have all been separately validated as individual anti-cancer drug targets. The identification of GLI1 as a key transcriptional regulator for each of these pathways highlights its promise as a therapeutic target. Small molecule GLI1 inhibitors are potentially efficacious against human malignancies arising from multiple oncogenic mechanisms. AREAS COVERED This review provides an overview of the key oncogenic cellular pathways that regulate GLI1 transcriptional activity. It also provides a detailed account of small molecule GLI1 inhibitors that are currently under development as potential anti-cancer chemotherapeutics. EXPERT OPINION Interest in developing inhibitors of GLI1-mediated transcription has significantly increased as its role in multiple oncogenic signaling pathways has been elucidated. To date, it has proven difficult to directly target GLI1 with small molecules, and the majority of compounds that inhibit GLI1 activity function through indirect mechanisms. To date, no direct-acting GLI1 inhibitor has entered clinical trials. The identification and development of new scaffolds that can bind and directly inhibit GLI1 are essential to further advance this class of chemotherapeutics.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|