1
|
Righini MF, Durham A, Tsoutsou PG. Hyperthermia and radiotherapy: physiological basis for a synergistic effect. Front Oncol 2024; 14:1428065. [PMID: 39165690 PMCID: PMC11333208 DOI: 10.3389/fonc.2024.1428065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels. A phenomenon of temporary resistance to heat, known as thermotolerance, follows each HT session. Cancer treatment requires innovative concepts and combinations to be tested but, for a meaningful development of clinical trials, the understanding of the underlying mechanisms of the tested modalities is essential. In this mini-review, we aimed to describe the synergistic effects of the combination of HT with RT as well as the phenomena of thermal shock and thermotolerance, in order to stimulate clinicians in new, clinically relevant concepts and combinations, which become particularly relevant in the era of technological advents in both modalities but also cancer immunotherapy.
Collapse
Affiliation(s)
| | - André Durham
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pelagia G. Tsoutsou
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
2
|
Szasz A. Pulsing Addition to Modulated Electro-Hyperthermia. Bioengineering (Basel) 2024; 11:725. [PMID: 39061807 PMCID: PMC11273694 DOI: 10.3390/bioengineering11070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Numerous preclinical results have been verified, and clinical results have validated the advantages of modulated electro-hyperthermia (mEHT). This method uses the nonthermal effects of the electric field in addition to thermal energy absorption. Modulation helps with precisely targeting and immunogenically destroying malignant cells, which could have a vaccination-like abscopal effect. A new additional modulation (high-power pulsing) further develops the abilities of the mEHT. My objective is to present the advantages of pulsed treatment and how it fits into the mEHT therapy. Pulsed treatment increases the efficacy of destroying the selected tumor cells; it is active deeper in the body, at least tripling the penetration of the energy delivery. Due to the constant pulse amplitude, the dosing of the absorbed energy is more controllable. The induced blood flow for reoxygenation and drug delivery is high enough but not as high as increasing the risk of the dissemination of malignant cells. The short pulses have reduced surface absorption, making the treatment safer, and the increased power in the pulses allows the reduction of the treatment time needed to provide the necessary dose.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
3
|
Kim JH, Shin JY, Lee SY. Treatment of Pelvic and Spinal Bone Metastases: Radiotherapy and Hyperthermia Alone vs. in Combination. Cancers (Basel) 2024; 16:1604. [PMID: 38672685 PMCID: PMC11049148 DOI: 10.3390/cancers16081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Painful pelvic and spinal bone metastases are a considerable challenge for doctors and patients. Conventional therapies include morphine-equivalent medication (MeM) and local radiotherapy (RT), but these interventions are not always successful. More recently, hyperthermia (HT) has been applied to complement RT and MeM, and this complex approach has shown promising synergistic results. The objective of our study was to present the results of RT combined with a special kind of HT (modulated electrohyperthermia, mEHT), in which some of the thermal effect is contributed by equivalent nonthermal components, drastically reducing the necessary power and energy. This retrospective study included 61 patients divided into three groups with pelvic and spinal bone metastases to compare the effects of RT and mEHT alone and in combination (RT + mEHT). A detailed evaluation of pain intensity, measured by the brief pain inventory score, MeM use, and breakthrough pain episodes, revealed no significant differences between RT and mEHT alone; thus, these individual methods were considered equivalent. However, RT + mEHT yielded significantly better results in terms of the above parameters. Clinically, mEHT has a lower risk of adverse thermal effects, and due to its efficacy, mEHT can be used to treat RT-resistant lesions.
Collapse
Affiliation(s)
- Jong-Hun Kim
- Division of Thoracic and Cardiovascular Surgery, Jeonbuk National University Hospital-Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Jin-Yong Shin
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Jeonbuk National University Hospital-Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Sun-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Radiation Oncology, Jeonbuk National University Hospital-Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
4
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
5
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
6
|
Lee SY, Lorant G, Grand L, Szasz AM. The Clinical Validation of Modulated Electro-Hyperthermia (mEHT). Cancers (Basel) 2023; 15:4569. [PMID: 37760538 PMCID: PMC10526385 DOI: 10.3390/cancers15184569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The mEHT method uses tissues' thermal and bioelectromagnetic heterogeneity for the selective mechanisms. The success of the therapy for advanced, relapsed, and metastatic aggressive tumors can only be demonstrated by measuring survival time and quality of life (QoL). The complication is that mEHT-treated patients cannot be curatively treated any longer with "gold standards", where the permanent progression of the disease, the refractory, relapsing situation, the organ failure, the worsening of blood counts, etc., block them. Collecting a cohort of these patients is frequently impossible. Only an intent-to-treat (ITT) patient group was available. Due to the above limitations, many studies have single-arm data collection. The Phase III trial of advanced cervix tumors subgrouping of HIV-negative and -positive patients showed the stable efficacy of mEHT in all patients' subgroups. The single-arm represents lower-level evidence, which can be improved by comparing the survival data of various studies from different institutes. The Kaplan-Meier probability comparison had no significant differences, so pooled data were compared to other methods. Following this approach, we demonstrate the feasibility and superiority of mEHT in the cases of glioblastoma multiform, pancreas carcinomas, lung tumors, and colorectal tumors.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Gergo Lorant
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary;
| | - Laszlo Grand
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary;
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary;
| |
Collapse
|
7
|
Chi MS, Tien DC, Chi KH. Inhomogeneously distributed ferroptosis with a high peak-to-valley ratio may improve the antitumor immune response. Front Oncol 2023; 13:1178681. [PMID: 37700825 PMCID: PMC10494438 DOI: 10.3389/fonc.2023.1178681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Combined radiotherapy (RT) and mild hyperthermia have been used clinically for decades to increase local control. Both modalities tend to achieve a homogeneous dose distribution within treatment targets to induce immunogenic cell death. However, marked, and long-lasting abscopal effects have not usually been observed. We proposed a hypothesis to emphasize the importance of the peak-to-valley ratio of the dose distribution inside the tumor to induce immunogenic ferrroptosis in peak area while avoid nonimmunogenic ferroptosis in valley area. Although inhomogeneous distributed energy absorption has been noted in many anticancer medical fields, the idea of sedulously created dose inhomogeneity related to antitumor immunity has not been discussed. To scale up the peak-to-valley ratio, we proposed possible implications by the combination of nanoparticles (NP) with conventional RT or hyperthermia, or the use of a high modulation depth of extremely low frequency hyperthermia or high resolution spatially fractionated radiotherapy (SFRT) to enhance the antitumor immune reactions.
Collapse
Affiliation(s)
- Mau-Shin Chi
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Der-Chi Tien
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Systematic review about complementary medical hyperthermia in oncology. Clin Exp Med 2022; 22:519-565. [PMID: 35767077 PMCID: PMC9244386 DOI: 10.1007/s10238-022-00846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Hyperthermia is a generic term for different techniques using heat in cancer therapies. Temperatures of about 42° Celsius in combination with chemo- or radiotherapy may improve the effectiveness of those treatments. Clinical benefit is shown in “standard hyperthermia” with tumour temperatures assessed during treatment. This systematic review thoroughly assesses the state of evidence concerning the benefits and side effects of electro hyperthermia or whole-body hyperthermia (“alternative hyperthermia”) in oncology. From 26 April 2021 to 09 May 2021, a systematic search was conducted searching five electronic databases (Embase, Cochrane, PsycINFO, CINAHL and Medline) to find studies concerning the use, effectiveness and potential harm of alternative medical hyperthermia therapy on cancer patients. From all 47,388 search results, 53 publications concerning 53 studies with 2006 patients were included in this systematic review. The patients were diagnosed with different types of cancer. The hyperthermic methods included whole-body hyperthermia (WBH) with different methods and electro hyperthermia (EH). The majority of the included studies were single-arm studies, counting in total 32 studies. Six studies were randomized controlled trials (RCT). In addition, one systematic review (SR) was found. The most critical endpoints were tumour response, survival data, pain relief, myelosuppression and toxicities. Outcome was heterogeneous, and considering the methodological limitations, clinical evidence for the benefit of alternative hyperthermia in cancer patients is lacking. Neither for whole-body hyperthermia nor for electro hyperthermia there is any evidence with respect to improvement of survival or quality of life in cancer patients.
Collapse
|
9
|
Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells 2022; 11:cells11111838. [PMID: 35681533 PMCID: PMC9180583 DOI: 10.3390/cells11111838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
The role of Heat Shock Proteins (HSPs) is a “double-edged sword” with regards to tumors. The location and interactions of HSPs determine their pro- or antitumor activity. The present review includes an overview of the relevant functions of HSPs, which could improve their antitumor activity. Promoting the antitumor processes could assist in the local and systemic management of cancer. We explore the possibility of achieving this by manipulating the electromagnetic interactions within the tumor microenvironment. An appropriate electric field may select and affect the cancer cells using the electric heterogeneity of the tumor tissue. This review describes the method proposed to effect such changes: amplitude-modulated radiofrequency (amRF) applied with a 13.56 MHz carrier frequency. We summarize the preclinical investigations of the amRF on the HSPs in malignant cells. The preclinical studies show the promotion of the expression of HSP70 on the plasma membrane, participating in the immunogenic cell death (ICD) pathway. The sequence of guided molecular changes triggers innate and adaptive immune reactions. The amRF promotes the secretion of HSP70 also in the extracellular matrix. The extracellular HSP70 accompanied by free HMGB1 and membrane-expressed calreticulin (CRT) form damage-associated molecular patterns encouraging the dendritic cells’ maturing for antigen presentation. The process promotes killer T-cells. Clinical results demonstrate the potential of this immune process to trigger a systemic effect. We conclude that the properly applied amRF promotes antitumor HSP activity, and in situ, it could support the tumor-specific immune effects produced locally but acting systemically for disseminated cells and metastatic lesions.
Collapse
|
10
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
11
|
Kim S, Lee JH, Cha J, You SH. Beneficial effects of modulated electro-hyperthermia during neoadjuvant treatment for locally advanced rectal cancer. Int J Hyperthermia 2021; 38:144-151. [PMID: 33557636 DOI: 10.1080/02656736.2021.1877837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Modulated electro-hyperthermia (mEHT) may enhance the tumor response, although the effectiveness of combined neoadjuvant therapy remains unclear. Therefore, we investigated the role of mEHT with neoadjuvant therapy for locally advanced rectal cancer. MATERIALS AND METHODS Clinical data were analyzed for 120 patients who received neoadjuvant treatment for locally advanced rectal cancer (T3/4 or N+, M0) from May 2012 to December 2017. Capecitabine or 5-fluorouracil was administered along with radiotherapy. Patients were categorized into mEHT group (62 patients) and non-mEHT group (58 patients) depending on whether mEHT was added. Surgery was performed 6-8 weeks after the end of radiotherapy. RESULTS The median age was 59 years (range, 33-83). The median radiation dose was significantly less for mEHT group (40 Gy) than for non-mEHT group (50.4 Gy). In mEHT group, 80.7% showed down-staging compared with 67.2% in non-mEHT group. For large tumors of more than 65 cm³ (mean), improved tumor regression was observed in 31.6% of mEHT group compared with 0% of non-mEHT group (p = .024). The gastrointestinal toxicity rate of mEHT group was 64.5%, which was found to be statistically significantly less than 87.9% of non-mEHT group (p = .010). The 2-year disease-free survival was 96% for mEHT group and 79% for non-mEHT group (p = .054). CONCLUSION The overall mEHT group had a comparable response and survival using less radiation dosing compared with standard care; the subgroup with large tumors showed improved efficacy for tumor regression after mEHT.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Hyeok Lee
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jihye Cha
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Alshaibi HF, Al-shehri B, Hassan B, Al-zahrani R, Assiss T. Modulated Electrohyperthermia: A New Hope for Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8814878. [PMID: 33274226 PMCID: PMC7683119 DOI: 10.1155/2020/8814878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
According to the World Health Organization, the prevalence of cancer has increased worldwide. Oncological hyperthermia is a group of methods that overheat the malignant tissues locally or systematically. Nevertheless, hyperthermia is not widely accepted, primarily because of the lack of selectivity for cancer cells and because the temperature-triggered higher blood flow increases the nutrient supply to the tumor, raising the risk of metastases. These problems with classical hyperthermia led to the development of modulated electrohyperthermia (mEHT). The biophysical differences of the cancer cells and their healthy hosts allow for selective energy absorption on the membrane rafts of the plasma membrane of the tumor cells, triggering immunogenic cell death. Currently, this method is used in only 34 countries. The effectiveness of conventional oncotherapies increases when it is applied in combination with mEHT. In silico, in vitro, and in vivo preclinical research studies have all shown the extraordinary ability of mEHT to kill malignant cells. Clinical applications have improved the quality of life and the survival of patients. For these reasons, many other research studies are presently in progress worldwide. Thus, the objective of this review is to highlight the capabilities and advantages of mEHT and provide new hopes for cancer patients worldwide.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Faculty of Science Biochemistry Department, King Abdulaziz University, Saudi Arabia P.O. Box 52502, Jeddah 21573
| | - Bashayr Al-shehri
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Basmah Hassan
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Raghad Al-zahrani
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Taghreed Assiss
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| |
Collapse
|
13
|
Keam S, Gill S, Ebert MA, Nowak AK, Cook AM. Enhancing the efficacy of immunotherapy using radiotherapy. Clin Transl Immunology 2020; 9:e1169. [PMID: 32994997 PMCID: PMC7507442 DOI: 10.1002/cti2.1169] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/04/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical breakthroughs in cancer immunotherapy, especially with immune checkpoint blockade, offer great hope for cancer sufferers - and have greatly changed the landscape of cancer treatment. However, whilst many patients achieve clinical responses, others experience minimal benefit or do not respond to immune checkpoint blockade at all. Researchers are therefore exploring multimodal approaches by combining immune checkpoint blockade with conventional cancer therapies to enhance the efficacy of treatment. A growing body of evidence from both preclinical studies and clinical observations indicates that radiotherapy could be a powerful driver to augment the efficacy of immune checkpoint blockade, because of its ability to activate the antitumor immune response and potentially overcome resistance. In this review, we describe how radiotherapy induces DNA damage and apoptosis, generates immunogenic cell death and alters the characteristics of key immune cells in the tumor microenvironment. We also discuss recent preclinical work and clinical trials combining radiotherapy and immune checkpoint blockade in thoracic and other cancers. Finally, we discuss the scheduling of immune checkpoint blockade and radiotherapy, biomarkers predicting responses to combination therapy, and how these novel data may be translated into the clinic.
Collapse
Affiliation(s)
- Synat Keam
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| | - Suki Gill
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
| | - Martin A Ebert
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
- School of Physics, Mathematics and ComputingThe University of Western AustraliaPerthWAAustralia
| | - Anna K Nowak
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
- Department of Medical OncologySir Charles Gairdner HospitalNedlands, PerthWAAustralia
| | - Alistair M Cook
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
14
|
Wang H, Li X, Peng R, Wang Y, Wang J. Stereotactic ablative radiotherapy for colorectal cancer liver metastasis. Semin Cancer Biol 2020; 71:21-32. [PMID: 32629077 DOI: 10.1016/j.semcancer.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Survival improvement of colorectal liver metastasis (CRLM) benefits from systemic therapy and metastasis-directed local therapy. Stereotactic ablative body radiotherapy (SABR), as a new efficient metastasis-directed local therapy with a systematic impact, plays a vital role in CRLM multidisciplinary treatment. SABR leads to a dramatic immunological change in the tumor microenvironment (TME) via differential activation of cytoprotective and cytotoxic pathways in malignant and non-malignant cells, in addition to direct tumor cell death. The synergy of SABR and immunotherapy might increase the abscopal response rate of out-field lesions by targeting different steps of the immune-mediated response, in addition to direct intratumoral cell death. The clinical treatment and efficacy of SABR, its influence on TME, and potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xuemin Li
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Ran Peng
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
15
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85:106663. [PMID: 32521494 DOI: 10.1016/j.intimp.2020.106663] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
Abscopal effect is an interesting phenomenon in radiobiology that causes activation of immune system against cancer cells. Traditionally, this phenomenon was known as a suppressor of non-irradiated tumors or metastasis. However, it can be used as a stimulator of the immune system against primary tumor during radiotherapy. Immunotherapy, a novel tumor therapy modality, also triggers immune system against cancer. To date, some immunotherapy types have been developed. However, immune checkpoint blockade is a more common modality and some drugs have been approved by the FDA. Studies have shown that radiotherapy or immunotherapy administered alone have low efficiency for tumor control. However, their combination has a more potent anti-tumor immunity. For this aim, it is important to induce abscopal effect in primary tumors, and also use appropriate drugs to target the mechanisms involved in the exhaustion of cytotoxic CD8+T lymphocytes (CTLs) and natural killer (NK) cells. Among the different radiotherapy techniques, stereotactic body radiation therapy (SBRT) with some few fractionations is the best choice for inducing abscopal effect. On the other hand, programmed cell death 1 (PD-1) is known as one of the best targets for triggering anti-tumor immunity. This combination is known as the best choice among various strategies for radioimmunotherapy. However, there is the need for other strategies to improve the duration of immune system's activity within tumor microenvironment (TME). In this review, we explain the cellular and molecular mechanisms behind abscopal effect by radiotherapy and evaluate the molecular targets which induce potent anti-tumor immunity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolhassan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|