1
|
Lee JY, Peng T. Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging. Semin Cancer Biol 2024; 106-107:192-200. [PMID: 39433114 DOI: 10.1016/j.semcancer.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Aging is associated with stereotyped changes in the tissue microenvironment that increase susceptibility to diseases of the elderly, including organ fibrosis and cancer. From a tissue perspective, fibrosis and cancer can both be viewed as non-healing wounds with pathogenic activation of tissue repair pathways in the stroma. If fibrosis and cancer represent an example of the convergent evolution of maladaptive stromal responses in distinct pathologies, what are the analogous cell types that might emerge in both diseases that share similarities in identity and function? In this review, we explore how senescent fibroblasts form a nexus that connects the aging organ with both fibrosis and cancer. The advent of single cell sequencing, coupled with improved detection of cell types with senescent traits in vivo, have allowed us to identify senescent fibroblasts with similar identities in both fibrosis and cancer that share pro-fibrotic programs. In addition to their ability to reorganize the extracellular matrix in diseased states, these pro-fibrotic senescent fibroblasts can also promote epithelial reprogramming and immune rewiring, which drive disease progression in fibrosis and cancer. Finally, the identification of common pathogenic cell types in fibrosis and cancer also presents a therapeutic opportunity to target both diseases with a shared approach.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, San Francisco, CA, USA; Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Maimaitiyiming A, An H, Xing C, Li X, Li Z, Bai J, Luo C, Zhuo T, Huang X, Maimaiti A, Aikemu A, Wang Y. Machine learning-driven mast cell gene signatures for prognostic and therapeutic prediction in prostate cancer. Heliyon 2024; 10:e35157. [PMID: 39170129 PMCID: PMC11336432 DOI: 10.1016/j.heliyon.2024.e35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background The role of Mast cells has not been thoroughly explored in the context of prostate cancer's (PCA) unpredictable prognosis and mixed immunotherapy outcomes. Our research aims to employs a comprehensive computational methodology to evaluate Mast cell marker gene signatures (MCMGS) derived from a global cohort of 1091 PCA patients. This approach is designed to identify a robust biomarker to assist in prognosis and predicting responses to immunotherapy. Methods This study initially identified mast cell-associated biomarkers from prostate adenocarcinoma (PRAD) patients across six international cohorts. We employed a variety of machine learning techniques, including Random Forest, Support Vector Machine (SVM), Lasso regression, and the Cox Proportional Hazards Model, to develop an effective MCMGS from candidate genes. Subsequently, an immunological assessment of MCMGS was conducted to provide new insights into the evaluation of immunotherapy responses and prognostic assessments. Additionally, we utilized Gene Set Enrichment Analysis (GSEA) and pathway analysis to explore the biological pathways and mechanisms associated with MCMGS. Results MCMGS incorporated 13 marker genes and was successful in segregating patients into distinct high- and low-risk categories. Prognostic efficacy was confirmed by survival analysis incorporating MCMGS scores, alongside clinical parameters such as age, T stage, and Gleason scores. High MCMGS scores were correlated with upregulated pathways in fatty acid metabolism and β-alanine metabolism, while low scores correlated with DNA repair mechanisms, homologous recombination, and cell cycle progression. Patients classified as low-risk displayed increased sensitivity to drugs, indicating the utility of MCMGS in forecasting responses to immune checkpoint inhibitors. Conclusion The combination of MCMGS with a robust machine learning methodology demonstrates considerable promise in guiding personalized risk stratification and informing therapeutic decisions for patients with PCA.
Collapse
Affiliation(s)
- Abudukeyoumu Maimaitiyiming
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Chen Xing
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Xiaodong Li
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Zhao Li
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junbo Bai
- Department of Pediatric Urology, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Luo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tao Zhuo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Huang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aierpati Maimaiti
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Yujie Wang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| |
Collapse
|
3
|
Capoferri D, Chiodelli P, Corli M, Belleri M, Scalvini E, Mignani L, Guerra J, Grillo E, De Giorgis V, Manfredi M, Presta M. The Pro-Oncogenic Sphingolipid-Metabolizing Enzyme β-Galactosylceramidase Modulates the Proteomic Landscape in BRAF(V600E)-Mutated Human Melanoma Cells. Int J Mol Sci 2023; 24:10555. [PMID: 37445731 DOI: 10.3390/ijms241310555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
β-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing β-galactosyl moieties from β-galactosylceramide and β-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.
Collapse
Affiliation(s)
- Davide Capoferri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Chiodelli
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marzia Corli
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisa Scalvini
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Guerra
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Allergic and Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Allergic and Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Song B, Zheng Y, Chi H, Zhu Y, Cui Z, Chen L, Chen G, Gao B, Du Y, Yu Z, Song B. Revealing the roles of glycosphingolipid metabolism pathway in the development of keloid: a conjoint analysis of single-cell and machine learning. Front Immunol 2023; 14:1139775. [PMID: 37168863 PMCID: PMC10164993 DOI: 10.3389/fimmu.2023.1139775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Keloid is a pathological scar formed by abnormal wound healing, characterized by the persistence of local inflammation and excessive collagen deposition, where the intensity of inflammation is positively correlated with the size of the scar formation. The pathophysiological mechanisms underlying keloid formation are unclear, and keloid remains a therapeutic challenge in clinical practice. This study is the first to investigate the role of glycosphingolipid (GSL) metabolism pathway in the development of keloid. Single cell sequencing and microarray data were applied to systematically analyze and screen the glycosphingolipid metabolism related genes using differential gene analysis and machine learning algorithms (random forest and support vector machine), and a set of genes, including ARSA,GBA2,SUMF2,GLTP,GALC and HEXB, were finally identified, for which keloid diagnostic model was constructed and immune infiltration profiles were analyzed, demonstrating that this set of genes could serve as a new therapeutic target for keloid. Further unsupervised clustering was performed by using expression profiles of glycosphingolipid metabolism genes to discover keloid subgroups, immune cells, inflammatory factor differences and the main pathways of enrichment between different subgroups were calculated. The single-cell resolution transcriptome landscape concentrated on fibroblasts. By calculating the activity of the GSL metabolism pathway for each fibroblast, we investigated the activity changes of GSL metabolism pathway in fibroblasts using pseudotime trajectory analysis and found that the increased activity of the GSL metabolism pathway was associated with fibroblast differentiation. Subsequent analysis of the cellular communication network revealed the existence of a fibroblast-centered communication regulatory network in keloids and that the activity of the GSL metabolism pathway in fibroblasts has an impact on cellular communication. This contributes to the further understanding of the pathogenesis of keloids. Overall, we provide new insights into the pathophysiological mechanisms of keloids, and our results may provide new ideas for the diagnosis and treatment of keloids.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guo Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Botao Gao
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yichen Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Zhou Yu, ; Baoqiang Song,
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Zhou Yu, ; Baoqiang Song,
| |
Collapse
|
5
|
Melia F, Udomjarumanee P, Zinovkin D, Arghiani N, Pranjol MZI. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front Oncol 2022; 12:975644. [PMID: 36059680 PMCID: PMC9434004 DOI: 10.3389/fonc.2022.975644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The disease still remains incurable and highly lethal in the advanced stage, representing a global health concern. Therefore, it is essential to understand the causes and risk factors leading to its development. Because age-related cellular senescence and type 2 diabetes (T2D) have been recognised as risk factors for CRC development, the recent finding that type 2 diabetic patients present an elevated circulating volume of senescent cells raises the question whether type 2 diabetes facilitates the process of CRC tumorigenesis by inducing premature cell senescence. In this review, we will discuss the mechanisms according to which T2D induces cellular senescence and the role of type 2 diabetes-induced cellular senescence in the pathogenesis and progression of colorectal cancer. Lastly, we will explore the current therapeutic approaches and challenges in targeting senescence.
Collapse
Affiliation(s)
- Francesco Melia
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Palita Udomjarumanee
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| | - Md Zahidul Islam Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| |
Collapse
|
6
|
Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase. Biochim Biophys Acta Rev Cancer 2021; 1877:188675. [PMID: 34974112 DOI: 10.1016/j.bbcan.2021.188675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
β-galactosylceramidase (GALC) is a lysosomal enzyme that removes β-galactose from β-galactosylceramide, leading to the formation of the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth by acting as an oncosuppressive or oncogenic enzyme depending on the different experimental approaches, in vitro versus in vivo observations, preclinical versus clinical findings, and tumor type investigated. This review will recapitulate and discuss the contrasting experimental evidence related to the impact of GALC on the biological behavior of cancer and stromal cells and its contribution to tumor progression.
Collapse
|
7
|
Presta M. β-Galactosylceramidase in cancer: friend or foe? Trends Cancer 2021; 7:974-977. [PMID: 34456156 DOI: 10.1016/j.trecan.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Lysosomal β-galactosylceramidase (GALC) removes β-galactose from β-galactosylceramide, thus generating the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth and differentiation, questioning its contribution to the sphingolipid metabolism in cancer cells and its role in tumor progression.
Collapse
Affiliation(s)
- Marco Presta
- Department of Molecular and Translational Medicine, Unity of Brescia, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Italian Consortium for Biotechnology (CIB), Unity of Brescia, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
8
|
Wei XL, Luo TQ, Li JN, Xue ZC, Wang Y, Zhang Y, Chen YB, Peng C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes in Gastric Cancer. Front Mol Biosci 2021; 8:691143. [PMID: 34277706 PMCID: PMC8277939 DOI: 10.3389/fmolb.2021.691143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Dysregulation of lipid metabolism plays important roles in the tumorigenesis and progression of gastric cancer (GC). The present study aimed to establish a prognostic model based on the lipid metabolism–related genes in GC patients. Materials and Methods: Two GC datasets from the Gene Expression Atlas, GSE62254 (n = 300) and GSE26942 (n = 217), were used as training and validation cohorts to establish a risk predictive scoring model. The efficacy of this model was assessed by ROC analysis. The association of the risk predictive scores with patient characteristics and immune cell subtypes was evaluated. A nomogram was constructed based on the risk predictive score model and other prognostic factors. Results: A risk predictive score model was established based on the expression of 19 lipid metabolism–related genes (LPL, IPMK, PLCB3, CDIPT, PIK3CA, DPM2, PIGZ, GPD2, GPX3, LTC4S, CYP1A2, GALC, SGMS1, SMPD2, SMPD3, FUT6, ST3GAL1, B4GALNT1, and ACADS). The time-dependent ROC analysis revealed that the risk predictive score model was stable and robust. Patients with high risk scores had significantly unfavorable overall survival compared with those with low risk scores in both the training and validation cohorts. A higher risk score was associated with more aggressive features, including a higher tumor grade, a more advanced TNM stage, and diffuse type of Lauren classification of GC. Moreover, distinct immune cell subtypes and signaling pathways were found between the high–risk and low–risk score groups. A nomogram containing patients’ age, tumor stage, adjuvant chemotherapy, and the risk predictive score could accurately predict the survival probability of patients at 1, 3, and 5 years. Conclusion: A novel 19-gene risk predictive score model was developed based on the lipid metabolism–related genes, which could be a potential prognostic indicator and therapeutic target of GC.
Collapse
Affiliation(s)
- Xiao-Li Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian-Qi Luo
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Ning Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Cheng Xue
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - You Zhang
- Zhongshan School of Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Bo Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
9
|
Yang M, Huang Q, Li C, Jiang Z, Sun J, Wang Z, Liang R, Li D, Li B, Zhao H. TOX Acts as a Tumor Suppressor by Inhibiting mTOR Signaling in Colorectal Cancer. Front Immunol 2021; 12:647540. [PMID: 33897695 PMCID: PMC8062716 DOI: 10.3389/fimmu.2021.647540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
The treatment and prognosis of advanced colorectal cancer (CRC) remain a challenging clinical research focus. Here, we describe a new CRC tumor suppressor and potential therapeutic target: thymocyte selection associated high mobility group box (TOX) protein. The expression of TOX was lower in CRC than para-CRC. With the increase of tumor stage, TOX expression decreased, indicating the presence of TOX relates to better overall survival (OS). TOX suppressed the mechanistic target of rapamycin kinase (mTOR) signaling to inhibit cell proliferation, migration, invasion, and change the epithelial-mesenchymal transition (EMT) process. In addition, TOX promoted apoptosis. As tumor mutation burden and tumor microenvironment play vital roles in the occurrence and development of tumors, we analyzed the TOX expression in the immune microenvironment of CRC. The high TOX expression was negatively correlated with TumorPurity. Moreover, it was positively related to ImmuneScore, StromalScore, microsatellite instability (MSI) status, and Consensus Molecular Subtypes (CMS) 3 typing. Based on gene set enrichment analysis (GSEA), the reduced expression of TOX activated mTOR. We found rapamycin, a mTOR inhibitor, partly inhibited cell proliferation, invasion, and migration in shTOX HCT116 cells. Lastly, TOX suppressed tumorigenesis and lung metastasis of CRC in vivo. Rapamycin alone or combined with PD1 inhibitor is more effective than PD1 inhibitor alone in a tumor model. Taken together, these findings highlight the tumor-suppressive role of TOX in CRC, especially in MSI CRC, and provide valuable information that rapamycin alone or combined with PD1 inhibitor has therapeutic potential in CRC.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianru Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changcan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Jiang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhiyu Wang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Henan Key Laboratory of Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Li S, Yan G, Yue M, Wang L. Extracellular vesicles-derived microRNA-222 promotes immune escape via interacting with ATF3 to regulate AKT1 transcription in colorectal cancer. BMC Cancer 2021; 21:349. [PMID: 33794833 PMCID: PMC8017736 DOI: 10.1186/s12885-021-08063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunotherapy has been recently established as a new direction for the treatment of colorectal cancer (CRC), a gastrointestinal cancer. In this investigation, we aimed to expound how the posttranscriptional regulation modulated by microRNA-222 (miR-222) from mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) affected the AKT pathway and the immune escape in CRC. METHODS CRC cell malignant phenotype, including proliferation, migration, invasion, and apoptosis, was firstly detected after co-culture with MSC-EVs. miRNAs with differential changes in CRC cells before and after EVs treatment were filtered by microarray analysis. miR-222 was then downregulated to examine its role in CRC cells in response to EVs. Cells were implanted in mice to induce xenograft tumors, and infiltrating T cells was assessed by immunohistochemistry. The mRNA microarray was used to screen target genes, followed by rescue experiments. ChIP and western blot were conducted to validate the downstream biomolecule of ATF3. RESULTS After treatment of CRC cells with MSC-EVs, the expression of miR-222 was upregulated, and cell activity was increased. Inhibition of miR-222 decreased CRC malignant aggressiveness in vitro and reduced tumorigenesis and immune escape in vivo. miR-222 targeted and bound to ATF3. Downregulation of ATF3 enhanced CRC cell malignant aggressiveness, tumorigenic capacity and immune escape. Mechanistically, ATF3 inhibited AKT1 transcription and mediated the AKT pathway. CONCLUSION MSC-EVs carry miR-222 to promote CRC cell malignant aggressiveness and immune escape. miR-222 targets and binds to ATF3, which inhibits AKT1 transcriptional activity and thereby mediates the AKT pathway.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|