1
|
Ma X, Zhang M, Xia W, Song Y. Antitumor mechanism of Saikosaponin A in the Xiaoying Sanjie Decoction for treatment of anaplastic thyroid cancer by network pharmacology analysis and experiments in vitro and in vivo. Fitoterapia 2023; 170:105665. [PMID: 37673277 DOI: 10.1016/j.fitote.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Effective therapies for anaplastic thyroid cancer (ATC) are still limited due to its dedifferentiated phenotype and high invasiveness. Xiaoying Sanjie Decoction (XYSJD), a clinically empirical Chinese medicine compound, has shown positive effects for ATC treatment and recovery. However, the pharmacological mechanisms of effective active compound in XYSJD remain unclear. In this study, we aimed at elucidating the antitumor mechanism of the active compound and identifying the kernel molecular mechanisms of XYSJD against ATC. Firstly, the main chemical constituents of XYSJD were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Then we used network pharmacology and ClusterONE algorithm to analyze the possible targets and pathways of the prescription and active compound Saikosaponin A (SSA). Seven core targets, including P2RY12, PDK1, PPP1CC, PPP2CA, TBK1, ITGB1 and ITGB6, which may be involved in the anti-tumor activity of XYSJD were screened. Finally, using cell biology, molecular biology and experimental zoology techniques, we investigated the mechanism of active compound SSA in the treatment of ATC. The results of qRT-PCR indicated that these seven nuclear targets might play an important role in SSA, the active compound of XYSJD. The combined data provide preliminary study of the pharmacological mechanisms of SSA in XYSJD. SSA may be a promising potential therapeutic and chemopreventive candidate for ATC.
Collapse
Affiliation(s)
- Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanan Song
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bukic E, Milasin J, Toljic B, Jadzic J, Jevtovic D, Obradovic B, Dragovic G. Association between Combination Antiretroviral Therapy and Telomere Length in People Living with Human Immunodeficiency Virus. BIOLOGY 2023; 12:1210. [PMID: 37759609 PMCID: PMC10525818 DOI: 10.3390/biology12091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Long-term exposure to combination antiretroviral therapy (cART) may be associated with accelerated ageing. Telomere length is considered to be reliable aging biomarker. The aim of this study was to compare patients' relative telomere length (RTL) between and within different cART classes and to estimate the impact of certain HIV-related variables on RTL. The study was conducted in 176 HIV-infected male patients receiving cART, with ≤50 copies HIV RNA/mL plasma. RTL was determined from mononuclear cells by quantitative polymerase chain reaction. Standard statistical tests and unsupervised machine learning were performed. The mean RTL was 2.50 ± 1.87. There was no difference (p = 0.761) in RTL between therapeutic groups: two nucleoside reverse transcriptase inhibitors as the backbone treatment, combined with either integrase inhibitor, protease inhibitor, or non-nucleoside reverse transcriptase inhibitor (NNRTI). Machine learning results suggested duration of HIV infection, CD4+ T-cell count, and cART, including NNRTI, as potentially significant variables impacting RTL. Kendall's correlation test excluded duration of HIV infection (p = 0.220) and CD4+ T-cell count (p = 0.536) as significant. The Mann-Whitney test confirmed that cART containing NNRTI impacted RTL (p = 0.018). This was the first study to show that patients using efavirenz within cART had significantly shorter telomeres than patients using nevirapine.
Collapse
Affiliation(s)
- Ena Bukic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade Faculty of Medicine, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bosko Toljic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Jadzic
- Center of Bone Biology, University of Belgrade Faculty of Medicine, 11000 Belgrade, Serbia
| | - Djordje Jevtovic
- Infective and Tropical Diseases Hospital, University of Belgrade Faculty of Medicine, 11000 Belgrade, Serbia
| | - Bozana Obradovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade Faculty of Medicine, 11000 Belgrade, Serbia
| | - Gordana Dragovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y, Lv J, Lv L, Liu P, Deng Z, Liu C. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 2023; 40:258. [PMID: 37524925 DOI: 10.1007/s12032-023-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhi Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Meng Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Huangren Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yuke Bai
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yanlin Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Ling Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Pengjie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China.
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| |
Collapse
|
4
|
Echegoyen-Silanes A, Pineda-Arribas JJ, Sánchez-Ares M, Cameselle-García S, Sobrino B, Ruíz-Ponte C, Piso-Neira M, Anda E, Cameselle-Teijeiro JM. Cribriform morular thyroid carcinoma: a case report with pathological, immunohistochemical, and molecular findings suggesting an origin from follicular cells (or their endodermal precursors). Virchows Arch 2023; 482:615-623. [PMID: 36689061 PMCID: PMC10033468 DOI: 10.1007/s00428-023-03495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Cribriform morular thyroid carcinoma (CMTC) is a rare malignant thyroid tumor with a peculiar growth pattern secondary to permanent activation of the WNT/β-catenin pathway. CMTC may be associated with familial adenomatous polyposis or sporadic; it shares morphological features with papillary thyroid carcinoma (PTC) and was considered a variant of PTC in the 2017 WHO classification of tumors of endocrine organs. The new 5th edition of the WHO classification of endocrine and neuroendocrine tumors considered CMTC an independent thyroid neoplasm of uncertain histogenesis. A thymic/ultimobranchial pouch-related differentiation in CMTC has been recently postulated. We, however, have used the pathological and immunohistochemical features of this case of CMTC with 2 novel oncogenic somatic variants (c.3428_3429insA, p.(Tyr1143Ter) and c.3565del, p. (Ser1189Hisfs*76) of the APC gene to propose an origin from follicular cells (or their endodermal precursors). As usual in CMTC, the morular component of this tumor was positive for CDX2. Given the fact that WNT/β-catenin signaling, through CDX2, activates large intestine and small intestine gene expression, we postulate that in CMTC, the tumor cells have their terminal differentiation blocked, thus showing a peculiar primitive endodermal (intestinal-like) phenotype negative for sodium-iodide symporter, thyroperoxidase, and thyroglobulin. Establishing the histogenesis of CMTC is very relevant for the development of appropriate therapies of redifferentiation, particularly in patients where the tumor cannot be controlled by surgery.
Collapse
Affiliation(s)
| | | | - María Sánchez-Ares
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Soledad Cameselle-García
- Department of Medical Oncology, University Hospital Complex of Ourense, Galician Healthcare Service (SERGAS), Ourense, Spain
| | - Beatriz Sobrino
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Clara Ruíz-Ponte
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Grupo de Medicina Xenómica-Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | - Magalí Piso-Neira
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Emma Anda
- Endocrinology Department, Hospital Universitario de Navarra, Pamplona, Navarra, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain.
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Liu Y, Wang J, Hu X, Pan Z, Xu T, Xu J, Jiang L, Huang P, Zhang Y, Ge M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist Updat 2023; 68:100939. [PMID: 36806005 DOI: 10.1016/j.drup.2023.100939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.
Collapse
Affiliation(s)
- Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
An Inverse Agonist of Estrogen-Related Receptor Gamma, GSK5182, Enhances Na +/I - Symporter Function in Radioiodine-Refractory Papillary Thyroid Cancer Cells. Cells 2023; 12:cells12030470. [PMID: 36766812 PMCID: PMC9914548 DOI: 10.3390/cells12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I-) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells.
Collapse
|
7
|
Alkaline Dilution Alters Sperm Motility in Dairy Goat by Affecting sAC/cAMP/PKA Pathway Activity. Int J Mol Sci 2023; 24:ijms24021771. [PMID: 36675287 PMCID: PMC9863640 DOI: 10.3390/ijms24021771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In dairy goat farming, increasing the female kid rate is beneficial to milk production and is, therefore, economically beneficial to farms. Our previous study demonstrated that alkaline incubation enriched the concentration of X-chromosome-bearing sperm; however, the mechanism by which pH affects the motility of X-chromosome-bearing sperm remains unclear. In this study, we explored this mechanism by incubating dairy goat sperm in alkaline dilutions, examining the pattern of changes in sperm internal pH and Ca2+ concentrations and investigating the role of the sAC/cAMP/PKA pathway in influencing sperm motility. The results showed that adding a calcium channel inhibitor during incubation resulted in a concentration-dependent decrease in the proportion of spermatozoa with forward motility, and the sperm sAC protein activity was positively correlated with the calcium ion concentration (r = 0.9972). The total motility activity, proportion of forward motility, and proportion of X-chromosome-bearing sperm decreased (p < 0.05) when cAMP/PKA protease activity was inhibited. Meanwhile, the enrichment of X-chromosome-bearing sperm by pH did not affect the sperm capacitation state. These results indicate that alkaline dilution incubation reduces Ca2+ entry into X-sperm and the motility was slowed down through the sAC/cAMP/PKA signaling pathway, providing a theoretical foundation for further optimization of the sex control method.
Collapse
|
8
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Zhang J, Zhao A, Jia X, Li X, Liang Y, Liu Y, Xie X, Qu X, Wang Q, Zhang Y, Gao R, Yu Y, Yang A. Sinomenine Hydrochloride Promotes TSHR-Dependent Redifferentiation in Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:10709. [PMID: 36142613 PMCID: PMC9500915 DOI: 10.3390/ijms231810709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radioactive iodine (RAI) plays an important role in the diagnosis and treatment of papillary thyroid cancer (PTC). The curative effects of RAI therapy are not only related to radiosensitivity but also closely related to the accumulation of radionuclides in the lesion in PTC. Sinomenine hydrochloride (SH) can suppress tumor growth and increase radiosensitivity in several tumor cells, including PTC. The aim of this research was to investigate the therapeutic potential of SH on PTC cell redifferentiation. In this study, we treated BCPAP and TPC-1 cells with SH and tested the expression of thyroid differentiation-related genes. RAI uptake caused by SH-pretreatment was also evaluated. The results indicate that 4 mM SH significantly inhibited proliferation and increased the expression of the thyroid iodine-handling gene compared with the control group (p < 0.005), including the sodium/iodide symporter (NIS). Furthermore, SH also upregulated the membrane localization of NIS and RAI uptake. We further verified that upregulation of NIS was associated with the activation of the thyroid-stimulating hormone receptor (TSHR)/cyclic adenosine monophosphate (cAMP) signaling pathway. In conclusion, SH can inhibit proliferation, induce apoptosis, promote redifferentiation, and then increase the efficacy of RAI therapy in PTC cells. Thus, our results suggest that SH could be useful as an adjuvant therapy in combination with RAI therapy in PTC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Aomei Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xi Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinru Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yiqian Liang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xijie Qu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Qi Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuemin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Rui Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yan Yu
- Department of Public Health, Health Science Center of Xi’an Jiaotong University, Xi’an 710061, China
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
10
|
Xu S, Cheng X, Wu J, Wang Y, Wang X, Wu L, Yu H, Bao J, Zhang L. Capsaicin restores sodium iodine symporter-mediated radioiodine uptake through bypassing canonical TSH‒TSHR pathway in anaplastic thyroid carcinoma cells. J Mol Cell Biol 2021; 13:791-807. [PMID: 34751390 PMCID: PMC8782610 DOI: 10.1093/jmcb/mjab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. ATCs are resistant to standard therapies and are extremely difficult to manage. The stepwise cell dedifferentiation results in the impairment of the iodine-metabolizing machinery and the infeasibility of radioiodine treatment in ATC. Hence, re-inducing iodine-metabolizing gene expression to restore radioiodine avidity is considered as a promising strategy to fight against ATC. In the present study, capsaicin (CAP), a natural potent transient receptor potential vanilloid type 1 (TRPV1) agonist, was discovered to re-induce ATC cell differentiation and to increase the expression of thyroid transcription factors (TTFs including TTF-1, TTF-2, and PAX8) and iodine-metabolizing proteins, including thyroid stimulating hormone receptor (TSHR), thyroid peroxidase, and sodium iodine symporter (NIS), in two ATC cell lines, 8505C and FRO. Strikingly, CAP treatment promoted NIS glycosylation and its membrane trafficking, resulting in a significant enhancement of radioiodine uptake of ATC cells in vitro. Mechanistically, CAP activated TRPV1 channel and subsequently triggered Ca2+ influx, cyclic adenosine monophosphate (cAMP) generation, and cAMP responsive element binding protein (CREB) signal activation. Next, CREB recognized and bound to the promoter of SLC5A5 to facilitate its transcription. Moreover, the TRPV1 antagonist CPZ, the calcium chelator BAPTA, and the PKA inhibitor H-89 effectively alleviated the re-differentiation exerted by CAP, demonstrating that CAP might improve radioiodine avidity through the activation of the TRPV1‒Ca2+/cAMP/PKA/CREB signaling pathway. In addition, our study indicated that CAP might trigger a novel cascade to re-differentiate ATC cells and provide unprecedented opportunities for radioiodine therapy in ATC, bypassing canonical TSH‒TSHR pathway.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China.,School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| |
Collapse
|
11
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
12
|
Enhancer of zeste homolog 2-mediated paired box 8 methylation promotes gastrointestinal stromal tumor progression through Wnt4 downregulation. Cancer Gene Ther 2021; 28:1162-1174. [PMID: 33479444 DOI: 10.1038/s41417-020-00266-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a refractory malignant tumor without satisfactory therapy. In recent years, aberrant gene methylation has been highlighted as an inducer for tumor progression. In this study, we explored whether enhancer of zeste homolog 2 (EZH2)-mediated paired box 8 (PAX8) methylation affects GIST development through regulation of Wnt4. A total of 50 cases of GIST tissues were collected and the human GIST cell lines were cultured. PAX8 methylation was examined using MS-PCR. Following loss- and gain-function approaches, GIST cell proliferation, migration, invasion, and apoptosis were examined by CCK-8 assay, Transwell assay and flow cytometry. The expression of proliferation related factors and apoptosis related factors was determined. Finally, xenograft tumors in nude mice were observed to examine in vivo tumorigenicity of GIST cells. Downregulated PAX8 and upregulated EZH2 expression was found in GIST tissues. Overexpression of PAX8 or suppression of PAX8 methylation using DNA methyltransferase inhibitor 5-Aza-dC inhibited the proliferation, migration, and invasion of GIST cells while promoting their apoptosis (diminished PCNA, Ki67 and Bcl-2, elevated Bax, and cleaved caspase-3). EZH2 promoted PAX8 methylation to inhibit its expression. Downregulated PAX8 decreased Wnt4 expression to accelerate GIST progression both in vitro and in vivo. Collectively, EZH2 inhibits PAX8 expression by promoting its methylation, which thus downregulates Wnt4 expression, thereby promoting the development of GIST.
Collapse
|
13
|
Hou S, Xie X, Zhao J, Wu C, Li N, Meng Z, Cai C, Tan J. Downregulation of miR-146b-3p Inhibits Proliferation and Migration and Modulates the Expression and Location of Sodium/Iodide Symporter in Dedifferentiated Thyroid Cancer by Potentially Targeting MUC20. Front Oncol 2021; 10:566365. [PMID: 33489878 PMCID: PMC7821393 DOI: 10.3389/fonc.2020.566365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The dedifferentiation of differentiated thyroid cancer (DTC) is a challenging problem for radioactive iodine (131I) treatment, also known as radioiodine refractory differentiated thyroid cancer (RAIR-DTC). The purpose of this study was to further explore the mechanism of the redifferentiation of dedifferentiated thyroid cancer. Ineffective and effective groups of 131I therapy were analyzed and compared in both our clinical and TCGA samples. Whole-exome sequencing, mutation analysis, transcriptome analysis, and in vitro functional experiments were conducted. FLG, FRG1, MUC6, MUC20, and PRUNE2 were overlapping mutation genes between our clinical cases, and the TCGA cases only appeared in the ineffective group. The expression of miR-146b-3p target MUC20 was explored. The expression levels of miR-146b-3p and MUC20 were significantly increased, and the inhibition of miR-146b-3p expression significantly inhibited proliferation and migration, promoted apoptosis, regulated the expression and location of thyroid differentiation-related genes, and sodium/iodide symporter (NIS) in dedifferentiated thyroid cancer cells (WRO). Thus, miR-146b-3p potentially targets MUC20 participation in the formation of DTC dedifferentiation, resulting in resistance to 131I and the loss of the iodine uptake ability of DTC cancer foci, promoting refractory differentiated thyroid cancer. miR-146b-3p may be a potentially therapeutic target for the reapplication of 131I therapy in dedifferentiated thyroid cancer patients.
Collapse
Affiliation(s)
- Shasha Hou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaorui Xie
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Department of Ultrasound, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cailan Wu
- Department of Nuclear Medicine, Tianjin Fourth Central Hospital, Tianjin, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunquan Cai
- Department of Pediatrics, Tianjin Children's Hospital, Tianjin, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|