1
|
Abdel-Aziz AAM, El-Azab AS, Brogi S, Ayyad RR, Alkahtani HM, Abuelizz HA, Al-Suwaidan IA, Al-Obaid AM. Synthesis, enzyme inhibition assay, and molecular modeling study of novel pyrazolines linked to 4-methylsulfonylphenyl scaffold: antitumor activity and cell cycle analysis. RSC Adv 2024; 14:22132-22146. [PMID: 39005246 PMCID: PMC11240878 DOI: 10.1039/d4ra03902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Antitumor activity using 59 cancer cell lines and enzyme inhibitory activity of a newly synthesized pyrazoline-linked 4-methylsulfonylphenyl scaffold (compounds 18a-q) were measured and compared with those of standard drugs. Pyrazolines 18b, 18c, 18f, 18g, 18h, and 18n possessed significant antitumor activity, with a positive cytotoxic effect (PCE) of 22/59, 21/59, 21/59, 48/59, 51/59, and 20/59, respectively. The cancer cell lines HL60, MCF-7, and MDA-MB-231 were used to measure the IC50 values of derivatives 18c, 18g, and 18hvia the MTT assay method, and the results were compared with those of reference drugs. Derivatives 18g and 18h showed potent and broad-spectrum antitumor activities against HL60 (IC50 of 10.43, 8.99 μM, respectively), MCF-7 (IC50 of 11.7 and 12.4 μM, respectively), and MDA-MB-231 (IC50 of 4.07 and 7.18 μM, respectively). Compound 18c exhibited strong antitumor activity against HL60 and MDA-MB-231 cell lines with IC50 values of 8.43 and 12.54 μM, respectively, and moderate antitumor activity against MCF-7 cell lines with an IC50 value of 16.20 μM. Compounds 18c, 18g, and 18h remarkably inhibited VEGFR2 kinase (IC50 = 0.218, 0.168, and 0.135 μM, respectively) compared with the reference drug sorafenib (IC50 = 0.041 μM). Compounds 18g and 18h effectively inhibited HER2 kinase (IC50 = 0.496 and 0.253 μM, respectively) compared with erlotinib (IC50 = 0.085 μM). Compound 18h inhibited EGFR kinase (IC50 = 0.574 μM) with a potency comparable with that of the reference drug erlotinib (IC50 = 0.105 μM). Pyrazolines 18c, 18f, and 18h arrested the S/G2 phase of the cell cycle in HL-60 cells. In addition, derivatives 18c, 18f, and 18h revealed lower Bcl-2 protein expression anti-apoptotic levels and higher Bax, caspase-3, and caspase-9 expression levels. Molecular docking studies of derivative 18h into the binding sites of EGFR, HER2, and VEGFR2 kinases explored the interaction mode of these pyrazoline derivatives and their structural requirements for antitumor activity.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Simone Brogi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-AzharUniversity Cairo Egypt
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman M Al-Obaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
2
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Poggialini F, Vagaggini C, Brai A, Pasqualini C, Carbone A, Musumeci F, Schenone S, Dreassi E. Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies. Pharmaceuticals (Basel) 2023; 16:1527. [PMID: 38004393 PMCID: PMC10674987 DOI: 10.3390/ph16111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Although patients would rather oral therapies to injections, the gastrointestinal tract's low permeability makes this method limiting for most compounds, including anticancer drugs. Due to their low bioavailability, oral antitumor therapies suffer from significant variability in pharmacokinetics and efficacy. The improvement of their pharmacokinetic profiles can be achieved by a new approach: the use of natural extracts enriched with polyphenolic compounds that act as intestinal permeability enhancers. Here, we propose a safe sweet cherry extract capable of enhancing oral absorption. The extract was characterized by the HPLC-UV/MS method, evaluated for in vitro antioxidant activity, safety on the Caco-2 cell line, and as a potential permeation enhancer. The sweet cherry extract showed a high antioxidant capacity (ABTS and DPPH assays were 211.74 and 48.65 µmol of Trolox equivalent/g dried extract, respectively), high content of polyphenols (8.44 mg of gallic acid per gram of dry extract), and anthocyanins (1.80 mg of cyanidin-3-glucoside equivalent per g of dry extract), reassuring safety profile (cell viability never lower than 98%), and a significant and fully reversible ability to alter the integrity of the Caco-2 monolayer (+81.5% of Lucifer yellow permeability after 2 h). Furthermore, the ability of the sweet cherry extract to improve the permeability (Papp) and modify the efflux ratio (ER) of reference compounds (atenolol, propranolol, and dasatinib) and selected pyrazolo[3,4-d]pyrimidine derivatives was investigated. The obtained results show a significant increase in apparent permeability across the Caco-2 monolayer (tripled and quadrupled in most cases), and an interesting decrease in efflux ratio when compounds were co-incubated with sweet cherry extract.
Collapse
Affiliation(s)
- Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, 53100 Siena, Italy; (F.P.); (C.V.); (A.B.); (C.P.)
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, 53100 Siena, Italy; (F.P.); (C.V.); (A.B.); (C.P.)
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, 53100 Siena, Italy; (F.P.); (C.V.); (A.B.); (C.P.)
| | - Claudia Pasqualini
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, 53100 Siena, Italy; (F.P.); (C.V.); (A.B.); (C.P.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (A.C.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (A.C.); (F.M.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (A.C.); (F.M.); (S.S.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, 53100 Siena, Italy; (F.P.); (C.V.); (A.B.); (C.P.)
| |
Collapse
|
4
|
Li Y, Drabison T, Nepal M, Ho RH, Leblanc AF, Gibson AA, Jin Y, Yang W, Huang KM, Uddin ME, Chen M, DiGiacomo DF, Chen X, Razzaq S, Tonniges JR, McTigue DM, Mims AS, Lustberg MB, Wang Y, Hummon AB, Evans WE, Baker SD, Cavaletti G, Sparreboom A, Hu S. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023; 8:e164646. [PMID: 37347545 PMCID: PMC10443802 DOI: 10.1172/jci.insight.164646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Richard H. Ho
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alix F. Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Xihui Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Sobia Razzaq
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | | | - Dana M. McTigue
- The Belford Center for Spinal Cord Injury & Department of Neuroscience, College of Medicine, and
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, New Haven, Connecticut, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Terconazole, an Azole Antifungal Drug, Increases Cytotoxicity in Antimitotic Drug-Treated Resistant Cancer Cells with Substrate-Specific P-gp Inhibitory Activity. Int J Mol Sci 2022; 23:ijms232213809. [PMID: 36430288 PMCID: PMC9696874 DOI: 10.3390/ijms232213809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Azole antifungal drugs have been shown to enhance the cytotoxicity of antimitotic drugs in P-glycoprotein (P-gp)-overexpressing-resistant cancer cells. Herein, we examined two azole antifungal drugs, terconazole (TCZ) and butoconazole (BTZ), previously unexplored in resistant cancers. We found that both TCZ and BTZ increased cytotoxicity in vincristine (VIC)-treated P-gp-overexpressing drug-resistant KBV20C cancer cells. Following detailed analysis, low-dose VIC + TCZ exerted higher cytotoxicity than co-treatment with VIC + BTZ. Furthermore, we found that VIC + TCZ could increase apoptosis and induce G2 arrest. Additionally, low-dose TCZ could be combined with various antimitotic drugs to increase their cytotoxicity in P-gp-overexpressing antimitotic drug-resistant cancer cells. Moreover, TCZ exhibited P-gp inhibitory activity, suggesting that the inhibitory activity of P-gp plays a role in sensitization afforded by VIC + TCZ co-treatment. We also evaluated the cytotoxicity of 12 azole antifungal drugs at low doses in drug-resistant cancer cells. VIC + TCZ, VIC + itraconazole, and VIC + posaconazole exhibited the strongest cytotoxicity in P-gp-overexpressing KBV20C and MCF-7/ADR-resistant cancer cells. These drugs exerted robust P-gp inhibitory activity, accompanied by calcein-AM substrate efflux. Given that azole antifungal drugs have long been used in clinics, our results, which reposition azole antifungal drugs for treating P-gp-overexpressing-resistant cancer, could be employed to treat patients with drug-resistant cancer rapidly.
Collapse
|
6
|
Low-Dose Rifabutin Increases Cytotoxicity in Antimitotic-Drug-Treated Resistant Cancer Cells by Exhibiting Strong P-gp-Inhibitory Activity. Int J Mol Sci 2022; 23:ijms23137383. [PMID: 35806386 PMCID: PMC9267098 DOI: 10.3390/ijms23137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The cytotoxicity of various antibiotics at low doses in drug-resistant cancer cells was evaluated. Low doses of rifabutin were found to markedly increase the cytotoxicity of various antimitotic drugs, such as vincristine (VIC), to P-glycoprotein (P-gp)-overexpressing antimitotic-drug-resistant KBV20C cells. Rifabutin was also found to exert high levels of P-gp-inhibitory activity at 4 and 24 h posttreatment, suggesting that the cytotoxicity of VIC + rifabutin was mainly due to the direct binding of rifabutin to P-gp and the reduction of VIC efflux by P-gp. The combination of VIC + rifabutin also increased early apoptosis, G2 arrest, and the DNA damaging marker, pH2AX protein. Interestingly, only the combination of VIC + rifabutin induced remarkable levels of cytotoxicity in resistant KBV20C cells, whereas other combinations (VIC + rifampin, VIC + rifapentine, and VIC + rifaximin) induced less cytotoxicity. Such finding suggests that rifabutin specifically increases the cytotoxicity of VIC in KBV20C cells, independent of the toxic effect of the ansamycin antibiotic. Only rifabutin had high P-gp-inhibitory activity, which suggests that its high P-gp-inhibitory activity led to the increased cytotoxicity of VIC + rifabutin. As rifabutin has long been used in the clinic, repositioning this drug for P-gp-overexpressing resistant cancer could increase the availability of treatments for patients with drug-resistant cancer.
Collapse
|
7
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
8
|
JAK2 Inhibitor, Fedratinib, Inhibits P-gp Activity and Co-Treatment Induces Cytotoxicity in Antimitotic Drug-Treated P-gp Overexpressing Resistant KBV20C Cancer Cells. Int J Mol Sci 2022; 23:ijms23094597. [PMID: 35562984 PMCID: PMC9100550 DOI: 10.3390/ijms23094597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
P-glycoprotein (P-gp) overexpression is one of the major mechanisms of multidrug resistance (MDR). Previously, co-treatment with Janus kinase 2 (JAK2) inhibitors sensitized P-gp-overexpressing drug-resistant cancer cells. In this study, we assessed the cytotoxic effects of JAK2 inhibitor, fedratinib, on drug-resistant KBV20C cancer cells. We found that co-treatment with fedratinib at low doses induced cytotoxicity in KBV20C cells treated with vincristine (VIC). However, fedratinib-induced cytotoxicity was little effect on VIC-treated sensitive KB parent cells, suggesting that these effects are specific to resistant cancer cells. Fluorescence-activated cell sorting (FACS), Western blotting, and annexin V analyses were used to further investigate fedratinib’s mechanism of action in VIC-treated KBV20C cells. We found that fedratinib reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. G2 phase arrest and apoptosis in VIC–fedratinib-co-treated cells resulted from the upregulation of p21 and the DNA damaging marker pH2AX. Compared with dimethyl sulfoxide (DMSO)-treated cells, fedratinib-treated KBV20C cells showed two-fold higher P-gp-inhibitory activity, indicating that VIC–fedratinib sensitization is dependent on the activity of fedratinib. Similar to VIC, fedratinib co-treatment with other antimitotic drugs (i.e., eribulin, vinorelbine, and vinblastine) showed increased cytotoxicity in KBV20C cells. Furthermore, VIC–fedratinib had similar cytotoxic effects to co-treatment with other JAK2 inhibitors (i.e., VIC–CEP-33779 or VIC–NVP-BSK805) at the same dose; similar cytotoxic mechanisms (i.e., early apoptosis) were observed between treatments, suggesting that co-treatment with JAK2 inhibitors is generally cytotoxic to P-gp-overexpressing resistant cancer cells. Given that fedratinib is FDA-approved, our findings support its application in the co-treatment of P-gp-overexpressing cancer patients showing MDR.
Collapse
|
9
|
Park JH, Lee JS, Oh Y, Lee JS, Park HE, Lee H, Park YS, Kyung SY, Kim HS, Yoon S. PKM2 Is Overexpressed in Glioma Tissues, and Its Inhibition Highly Increases Late Apoptosis in U87MG Cells With Low-density Specificity. In Vivo 2022; 36:694-703. [PMID: 35241524 PMCID: PMC8931915 DOI: 10.21873/invivo.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Pyruvate kinase M2 (PKM2) functions as an important rate-limiting enzyme in aerobic glycolysis and is involved in tumor initiation and progression. However, there are few studies on the correlation between PKM2 expression and its role in glioma. MATERIALS AND METHODS PKM2 expression was immunohistochemically examined in human brain tumor samples. Furthermore, we studied the effects of two PKM2 inhibitors (shikonin and compound 3K) on the U87MG glioma cell line. RESULTS PKM2 was overexpressed in most glioma tissues when compared to controls. Interestingly, glioma-adjacent tissues from showed slight PKM2 overexpression. This suggests that PKM2 overexpression maybe an important trigger factor for glioma tumorigenesis. We found that the PKM2 inhibitor shikonin was effective against U87MG cells at a relatively low dose and was largely dependent on low cellular density compared to the effects of the anticancer drug vincristine. Shikonin highly increased late-apoptosis of U87MG cells. We also demonstrated that autophagy was involved in the increase in late-apoptosis levels caused by shikonin. Although vincristine treatment led to a high level of G2-phase arrest in U87MG cells, shikonin did not increase G2 arrest. Co-treatment with two PKM2 inhibitors, shikonin and compound 3K, increased the inhibitory effects. CONCLUSION Combination therapy with PKM2 inhibitors together might be more effective than combination therapy with anticancer drugs. Our findings encourage the application of PKM2-targeting in gliomas, and lay the foundation for the development of PKM2 inhibitors as promising antitumor agents for glioma.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Sun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Eun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Yoon S, Kim HS. Drug Repositioning With an Anticancer Effect: Contributions to Reduced Cancer Incidence in Susceptible Individuals. In Vivo 2021; 35:3039-3044. [PMID: 34697135 DOI: 10.21873/invivo.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022]
Abstract
Certain diseases and age groups are associated with a higher incidence of cancer. Cancer prevention can be achieved using repositioned drugs that have anticancer ability, thereby reducing the incidence of cancer in susceptible individuals. This implies that the selection of repositioned drugs can have dual benefits: controlling pre-existing diseases and facilitating cancer prevention. This report outlines the rationale underlying drug repositioning for medications with an anticancer effect and discusses its advantages. We discuss repositioned drugs with anticancer effects that may contribute to cancer prevention in susceptible individuals and the general population with temporary, treatable conditions. The discussion of drug repositioning in this review should facilitate the initiation of clinical trials and lead to therapeutic application of such drugs to reduce the incidence of cancer in susceptible individuals.
Collapse
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Yoon S, Wang X, Vongpunsawad S, Tromp G, Kuivaniemi H. Editorial: FDA-Approved Drug Repositioning for P-Glycoprotein Overexpressing Resistant Cancer. Front Oncol 2021; 11:632657. [PMID: 33816271 PMCID: PMC8018233 DOI: 10.3389/fonc.2021.632657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Xiaoju Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Sompong Vongpunsawad
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|