1
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
2
|
Guan W, Wang Y, Zhao H, Lu H, Zhang S, Liu J, Shi B. Prediction models for lymph node metastasis in cervical cancer based on preoperative heart rate variability. Front Neurosci 2024; 18:1275487. [PMID: 38410157 PMCID: PMC10894972 DOI: 10.3389/fnins.2024.1275487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024] Open
Abstract
Background The occurrence of lymph node metastasis (LNM) is one of the critical factors in determining the staging, treatment and prognosis of cervical cancer (CC). Heart rate variability (HRV) is associated with LNM in patients with CC. The purpose of this study was to validate the feasibility of machine learning (ML) models constructed with preoperative HRV as a feature of CC patients in predicting CC LNM. Methods A total of 292 patients with pathologically confirmed CC admitted to the Department of Gynecological Oncology of the First Affiliated Hospital of Bengbu Medical University from November 2020 to September 2023 were included in the study. The patient' preoperative 5-min electrocardiogram data were collected, and HRV time-domain, frequency-domain and non-linear analyses were subsequently performed, and six ML models were constructed based on 32 parameters. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results Among the 6 ML models, the random forest (RF) model showed the best predictive performance, as specified by the following metrics on the test set: AUC (0.852), accuracy (0.744), sensitivity (0.783), and specificity (0.785). Conclusion The RF model built with preoperative HRV parameters showed superior performance in CC LNM prediction, but multicenter studies with larger datasets are needed to validate our findings, and the physiopathological mechanisms between HRV and CC LNM need to be further explored.
Collapse
Affiliation(s)
- Weizheng Guan
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuling Wang
- Department of Gynecologic Oncology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Hui Lu
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Sai Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Jian Liu
- Department of Gynecologic Oncology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
3
|
Canali MM, Guyot M, Simon T, Daoudlarian D, Chabry J, Panzolini C, Petit-Paitel A, Hypolite N, Nicolas S, Bourdely P, Schmid-Antomarchi H, Schmid-Alliana A, Soria J, Karimdjee Soilihi B, Hofman P, Prevost-Blondel A, Kato M, Mougneau E, Glaichenhaus N, Blancou P. Environmental signals perceived by the brain abate pro-metastatic monocytes by dampening glucocorticoids receptor signaling. Cancer Cell Int 2023; 23:15. [PMID: 36726173 PMCID: PMC9893572 DOI: 10.1186/s12935-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
While positive social-behavioral factors predict longer survival in cancer patients, the underlying mechanisms are unknown. Since tumor metastasis are the major cancer mortality factor, we investigated how an enriched environment (EE) conductive to enhanced sensory, cognitive and motor stimulation impact metastatic progression in lungs following intravasation in the circulation. We find that mice housed in EE exhibited reduced number of lung metastatic foci compared to control mice housed in a standard environment (SE). Compared to SE mice, EE mice increased lung inflammation as early as 4 days after circulating tumor cells extravasation. The impact of environmental signals on lung metastasis is independent of adrenergic receptors signaling. By contrast, we find that serum corticosterone levels are lower in EE mice and that glucocorticoid receptor (GR) antagonist reduces the number of lung metastasis in SE mice. In addition, the difference of the number of lung metastasis between SE and EE mice is abolished when inflammatory monocytes are rendered deficient in GR signaling. This decreased GR signaling in inflammatory monocytes of SE mice results in an exacerbated inflammatory profile in the lung. Our study shows that not only EE reduces late stages of metastatic progression in lungs but disclose a novel anti-tumor mechanism whereby GR-dependent reprogramming of inflammatory monocytes can inhibit metastatic progression in lungs. Moreover, while inflammatory monocytes have been shown to promote cancer progression, they also have an anti-tumor effect, suggesting that their role is more complex than currently thought.
Collapse
Affiliation(s)
- María Magdalena Canali
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Mélanie Guyot
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Thomas Simon
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Douglas Daoudlarian
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Joelle Chabry
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Clara Panzolini
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Agnès Petit-Paitel
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Hypolite
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Sarah Nicolas
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Pierre Bourdely
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Heidy Schmid-Antomarchi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Annie Schmid-Alliana
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Javier Soria
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Babou Karimdjee Soilihi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France ,Polyclinique Saint Jean, Cagnes sur mer, France
| | - Paul Hofman
- grid.410528.a0000 0001 2322 4179Laboratory of Clinical and Experimental Pathology and Biobank, Nice University Hospital, Nice, France ,grid.460782.f0000 0004 4910 6551Research Institute on Cancer and Aging, Université Côte d’Azur, CNRS, INSERM, 28 Avenue de Valombrose, Nice, France
| | - Armelle Prevost-Blondel
- grid.462098.10000 0004 0643 431XUniversité Paris Descartes, CNRS, INSERM, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Masashi Kato
- grid.27476.300000 0001 0943 978XDepartment of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Evelyne Mougneau
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Glaichenhaus
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Philippe Blancou
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| |
Collapse
|
4
|
Zhou S, Li J, Yu J, Wang Y, Wang Z, He Z, Ouyang D, Liu H, Wang Y. Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy. J Control Release 2022; 351:656-666. [DOI: 10.1016/j.jconrel.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
5
|
Hernandez S, Serrano AG, Solis Soto LM. The Role of Nerve Fibers in the Tumor Immune Microenvironment of Solid Tumors. Adv Biol (Weinh) 2022; 6:e2200046. [PMID: 35751462 DOI: 10.1002/adbi.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Arman T, Nelson PS. Endocrine and paracrine characteristics of neuroendocrine prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1012005. [PMID: 36440195 PMCID: PMC9691667 DOI: 10.3389/fendo.2022.1012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer is a common malignancy affecting men worldwide. While the vast majority of newly diagnosed prostate cancers are categorized as adenocarcinomas, a spectrum of uncommon tumor types occur including those with small cell and neuroendocrine cell features. Benign neuroendocrine cells exist in the normal prostate microenvironment, and these cells may give rise to primary neuroendocrine carcinomas. However, the more common development of neuroendocrine prostate cancer is observed after therapeutics designed to repress the signaling program regulated by the androgen receptor which is active in the majority of localized and metastatic adenocarcinomas. Neuroendocrine tumors are identified through immunohistochemical staining for common markers including chromogranin A/B, synaptophysin and neuron specific enolase (NSE). These markers are also common to neuroendocrine tumors that arise in other tissues and organs such as the gastrointestinal tract, pancreas, lung and skin. Notably, neuroendocrine prostate cancer shares biochemical features with nerve cells, particularly functions involving the secretion of a variety of peptides and proteins. These secreted factors have the potential to exert local paracrine effects, and distant endocrine effects that may modulate tumor progression, invasion, and resistance to therapy. This review discusses the spectrum of factors derived from neuroendocrine prostate cancers and their potential to influence the pathophysiology of localized and metastatic prostate cancer.
Collapse
Affiliation(s)
- Tarana Arman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- *Correspondence: Peter S. Nelson,
| |
Collapse
|
7
|
Wang J, Liu J, Gao L, Li G, Sun Y, Shi B. Heart Rate Variability is an Independent Predictor of Lymph Node Metastasis in Patients with Cervical Cancer. Cancer Manag Res 2021; 13:8821-8830. [PMID: 34853536 PMCID: PMC8627856 DOI: 10.2147/cmar.s336268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose Heart rate variability (HRV) has been reported as a useful biomarker for prognostic factors in a variety of cancers. The purpose of this study was to explore the predictive value of preoperative HRV for lymph node metastasis (LNM) in patients with cervical cancer (CC). Patients and Methods A total of 77 patients with CC were included, including 18 LNM and 59 non-LNM patients. A five-minute resting electrocardiogram (ECG) was collected before surgery for the analysis of HRV time domain, frequency domain and Poincaré plot parameters (ie, SDNN, RMSSD, LF, HF, LF/HF, SD1, SD2 and SD2/SD1). Student’s t-tests and logistic regression were performed to determine the relationship between HRV and LNM. Results The LNM group had significantly lower SDNN, LF, and SD2 than the non-LNM group (all p < 0.05; all Cohen’s d > 0.5). Binary logistic regression analysis indicated that SDNN, LF and SD2 were still significantly associated with LNM. Specifically, for each 1 ms decrease in SDNN and SD2 and each 1 logarithmic unit decrease in ln (LF), the odds of LNM increased by 12%, 9%, and 86%, respectively (all p < 0.05). Conclusion These findings suggest an association between HRV and CC LNM, and HRV could be a potential noninvasive biomarker for the prediction of LNM in CC patients.
Collapse
Affiliation(s)
- Jingfeng Wang
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.,Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Jian Liu
- Department of Gynecologic Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Longfei Gao
- Department of Gynecologic Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.,Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Yilin Sun
- Department of Gynecologic Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.,Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| |
Collapse
|
8
|
Sympathetic signaling facilitates progression of neuroendocrine prostate cancer. Cell Death Discov 2021; 7:364. [PMID: 34811362 PMCID: PMC8608828 DOI: 10.1038/s41420-021-00752-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrβ2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrβ2 axis is a potential therapeutic intervention point for NEPC.
Collapse
|
9
|
Sigorski D, Gulczyński J, Sejda A, Rogowski W, Iżycka-Świeszewska E. Investigation of Neural Microenvironment in Prostate Cancer in Context of Neural Density, Perineural Invasion, and Neuroendocrine Profile of Tumors. Front Oncol 2021; 11:710899. [PMID: 34277455 PMCID: PMC8281889 DOI: 10.3389/fonc.2021.710899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stroma contains the neural compartment with specific components and action. Neural microenvironment processing includes among others axonogenesis, perineural invasion (PNI), neurosignaling, and tumor cell neural/neuroendocrine differentiation. Growing data suggest that tumor-neural crosstalk plays an important function in prostate cancer (PCa) biology. However, the mechanisms involved in PNI and axonogenesis, as well as their patho-clinical correlations in this tumor are unclear. Methods The present study was carried out on FFPE samples of 73 PCa and 15 benign prostate (BP) cases. Immunohistochemistry with neural markers PGP9.5, TH, and NFP was performed on constructed TMAs and selected tissue sections. The analyzed parameters of tumor innervation included small nerve density (ND) measured on pan-neural marker (PGP9.5) and TH s4tained slides, as well assessment of PNI presence and morphology. The qualitative and topographic aspects were studied. In addition, the expression of neuroendocrine marker chromogranin and NPY was assessed with dedicated indexes. The correlations of the above parameters with basic patho-clinical data such as patients’ age, tumor stage, grade, angioinvasion, and ERG status were examined. Results The study showed that innervation parameters differed between cancer and BP. The neural network in PCa revealed heterogeneity, and ND PGP9.5 in tumor was significantly lower than in its periphery. The density of sympathetic TH-positive fibers and its proportion to all fibers was lower in cancer than in the periphery and BP samples. Perineural invasion was confirmed in 76% of cases, usually multifocally, occurring more commonly in tumors with a higher grade. NPY expression in PCa cells was common with its intensity often rising towards PNI. ERG+ tumors showed higher ND, more frequent PNI, and a higher stage. Moreover, chromogranin-positive cells were more pronounced in PCa with higher NPY expression. Conclusions The analysis showed an irregular axonal network in prostate cancer with higher neural density (panneural and adrenergic) in the surroundings and the invasive front. ND and PNI interrelated with NPY expression, neuroendocrine differentiation, and ERG status. The above findings support new evidence for the presence of autocrine and paracrine interactions in prostate cancer neural microenvironment.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland.,Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration Hospital, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Copernicus Hospital, Gdańsk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Rogowski
- Department of Health, Pomeranian University in Słupsk, Słupsk, Poland.,Department of Oncology, Chemotherapy, Clinical trials, Regional Hospital, Słupsk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Copernicus Hospital, Gdańsk, Poland
| |
Collapse
|
10
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
11
|
Dwivedi S, Krishnan A. Neural invasion: a scenic trail for the nervous tumor and hidden therapeutic opportunity. Am J Cancer Res 2020; 10:2258-2270. [PMID: 32905513 PMCID: PMC7471340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023] Open
Abstract
Neural invasion (NI) is the invasion of cancer cells into nerves, influencing the pathological characteristics of malignant tumors. NI promotes metastasis and is associated with reduced survival of affected patients. Although known for decades, its prognostic and therapeutic implications have not been not much appreciated due to the scattered information available on its clinical complications. The use of multiple nomenclatures to describe NI also generated confusions among researchers to understand this pathological process. Here, we discuss the multiple classifications of NI and review its clinical complications. Recent findings of the regulatory roles of nerves on tumor growth have fuelled research in this field, and there has been several attempts to molecularly define the NI interface and the cancer cells involved. Therefore, in this review, we discuss the large datasets available to characterize the cancer cells in NI and also discuss the roles of Schwann cells and macrophages participating in NI.
Collapse
Affiliation(s)
- Shubham Dwivedi
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of SaskatchewanSaskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre, University of SaskatchewanSaskatoon, SK, S7K 0M7, Canada
| | - Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of SaskatchewanSaskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre, University of SaskatchewanSaskatoon, SK, S7K 0M7, Canada
| |
Collapse
|