1
|
He X, Huang H, Liu Y, Li H, Ren H. Analysis of the function, mechanism and clinical application prospect of TRPS1, a new marker for breast cancer. Gene 2025; 932:148880. [PMID: 39181273 DOI: 10.1016/j.gene.2024.148880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.
Collapse
Affiliation(s)
- Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Lennartz M, Löhr N, Höflmayer D, Dwertmann Rico S, von Bargen C, Kind S, Reiswich V, Viehweger F, Lutz F, Bertram V, Fraune C, Gorbokon N, Weidemann S, Blessin NC, Hube-Magg C, Menz A, Schlichter R, Krech T, Hinsch A, Burandt E, Sauter G, Simon R, Kluth M, Marx AH, Lebok P, Dum D, Minner S, Jacobsen F, Clauditz TS, Bernreuther C, Steurer S. TRPS1 is a Highly Sensitive Marker for Breast Cancer: A Tissue Microarray Study Evaluating More Than 19,000 Tumors From 152 Different Tumor Entities. Am J Surg Pathol 2024; 48:637-651. [PMID: 38647255 PMCID: PMC11093513 DOI: 10.1097/pas.0000000000002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Trichorhinophalangeal syndrome 1 (TRPS1) is a nuclear protein highly expressed in breast epithelial cells. TRPS1 immunohistochemistry (IHC) has been suggested as a breast cancer marker. To determine the diagnostic and prognostic utility of TRPS1 IHC, tissue microarrays containing 19,201 samples from 152 different tumor types and subtypes were analyzed. GATA3 IHC was performed in a previous study. TRPS1 staining was seen in 86 of 152 tumor categories with 36 containing at least one strongly positive case. TRPS1 staining predominated in various types of breast carcinomas (51%-100%), soft tissue tumors (up to 100%), salivary gland tumors (up to 46%), squamous cell carcinomas (up to 35%), and gynecological cancers (up to 40%). TRPS1 positivity occurred in 1.8% of 1083 urothelial neoplasms. In invasive breast carcinoma of no special type, low TRPS1 expression was linked to high grade ( P = 0.0547), high pT ( P < 0.0001), nodal metastasis ( P = 0.0571), loss of estrogen receptor and progesterone receptor expression ( P < 0.0001 each), and triple-negative status ( P < 0.0001) but was unrelated to patient survival ( P = 0.8016). In squamous cell carcinomas from 11 different sites, low TRPS1 expression was unrelated to tumor phenotype. Positivity for both TRPS1 and GATA3 occurred in 47.4% to 100% of breast cancers, up to 30% of salivary gland tumors, and 29 (0.3%) of 9835 tumors from 134 other cancer entities. TRPS1 IHC has high utility for the identification of cancers of breast (or salivary gland) origin, especially in combination with GATA3. The virtual absence of TRPS1 positivity in urothelial neoplasms is useful for the distinction of GATA3-positive urothelial carcinoma from breast cancer.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neele Löhr
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Clara von Bargen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veit Bertram
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C. Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
4
|
Baban F, Koepplin JW, Ahmad M, Clarke-Brodber AL, Bois MC, Hartley CP, Sturgis CD. TRPS1 outperforms GATA3 in pleural effusions with metastatic breast carcinoma versus mesothelioma. Diagn Cytopathol 2023. [PMID: 37096814 DOI: 10.1002/dc.25148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION In evaluating malignant pleural fluid cytology, metastatic adenocarcinomas and mesotheliomas are often differential diagnoses. GATA binding protein 3 (GATA3) has historically been used to confirm metastatic breast carcinomas; however, GATA3 has low specificity if mesothelioma is included in differential diagnoses. Trichorhinophalangeal syndrome type 1 (TRPS1) protein is expressed in all types of breast carcinomas, with reported high specificity and sensitivity. We investigated the performance of TRPS1 immunohistochemistry (IHC) and compared it to GATA3 in pleural fluids diagnosed with metastatic breast carcinoma and mesothelioma. METHODS Thirty-six consecutive ThinPrep pleural fluids and 4 pleural fine needle aspirations (FNAs) with diagnoses of metastatic breast carcinoma (21) and mesothelioma (19) were retrieved, and IHC with TRPS1 and GATA3 was performed on all. Immunoreactivity scores for TRPS1 were calculated by multiplying percentage of immunoreactive cells by staining intensity. Immunoreactivity scores were negative if 0 or 1, low positive if 2, intermediate positive if 3 or 4, or high positive if 6 or 9. Nuclear immunoreactivity of ≥10% with at least moderate intensity was judged GATA3 positive. RESULTS GATA3 showed immunoreactivity in all metastatic breast carcinomas and 84% of mesotheliomas. TRPS1 was immunoreactive in all breast carcinoma cases (18 with a score of 9 and 3 with a score of 6). TRPS1 showed low positivity in 5% of mesothelioma cases with all other cases being negative. CONCLUSION When cytomorphologic differential diagnoses of mesothelioma exist, TRPS1 is a more specific marker than GATA3 for confirmation of metastatic breast carcinoma in pleural fluid cytology.
Collapse
Affiliation(s)
- Farah Baban
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Justin W Koepplin
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Muhammad Ahmad
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Anna-Lee Clarke-Brodber
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D Sturgis
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology-Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Torabian P, Yousefi H, Fallah A, Moradi Z, Naderi T, Delavar MR, Ertas YN, Zarrabi A, Aref AR. Cancer stem cell-mediated drug resistance: A comprehensive gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 246:154482. [PMID: 37196466 DOI: 10.1016/j.prp.2023.154482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and a major public health concern. In the current report, differential expression of the breast cancer resistance promoting genes with a focus on breast cancer stem cell related elements as well as the correlation of their mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade/stage, and methylation status, have been investigated using METABRIC and TCGA datasets. To achieve this goal, we downloaded gene expression data of breast cancer patients from TCGA and METABRIC. Then, statistical analyses were used to assess the correlation between the expression levels of stem cell related drug resistant genes and methylation status, tumor grades, various molecular subtypes, and some cancer hallmark gene sets such as immune evasion, metastasis, and angiogenesis. According to the results of this study, a number of stem cell related drug resistant genes are deregulated in breast cancer patients. Furthermore, we observe negative correlations between methylation of resistance genes and mRNA expression. There is a significant difference in the expression of resistance-promoting genes between different molecular subtypes. As mRNA expression and DNA methylation are clearly related, DNA methylation might be a mechanism that regulates these genes in breast cancer cells. As indicated by the differential expression of resistance-promoting genes among various breast cancer molecular subtypes, these genes may function differently in different subtypes of breast cancer. In conclusion, significant deregulation of resistance-promoting factors indicates that these genes may play a significant role in the development of breast cancer.
Collapse
Affiliation(s)
- Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Cook EE, Harrison BT, Hirsch MS. TRPS1 expression is sensitive and specific for primary extramammary Paget disease. Histopathology 2023. [DOI: 10.1111/his.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
|
7
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|