1
|
Xu Q, Deng H, Huang X, Chen GQ, Quan YS, Wang YL, Liu JY, Yan R, Nie WZ, Shen QK, Quan ZS, Guo HY. Design, synthesis, and in vitro and in vivo biological evaluation of dihydroartemisinin derivatives as potent anti-cancer agents with ferroptosis-inducing and apoptosis-activating properties. Eur J Med Chem 2025; 281:117018. [PMID: 39488969 DOI: 10.1016/j.ejmech.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Natural products play a pivotal role in drug development, including their direct use as pharmaceuticals and their structural modification, yielding molecules with enhanced therapeutic potential. The discovery of bioactive molecules, lead compounds, and novel drugs is intrinsically linked to the structural optimization of natural products. In this study, forty-one derivatives of dihydroartemisinin (DHA) were synthesized by incorporating fragments with anti-tumour activity via molecular hybridization, and assessed for their anti-proliferative activity against human cancer cell lines (A549, Bel-7402, HCT-116, and SW620) and normal human liver cells (LO2). Most derivatives exhibited superior anti-proliferative activity compared to DHA. Notably, compound A3, featuring a 4-Cl phenyl carbamate moiety, demonstrated significant anti-proliferative activity against HCT-116 cells with an IC50 of 0.31 μM, making it 16-fold more potent than DHA (IC50 = 5.10 μM). The anti-proliferative mechanism did not involve cytotoxicity (SI = 54.13), indicating its superior safety profile compared to DHA (SI = 1.65). Further mechanistic studies revealed that compound A3 inhibits HCT-116 cell proliferation by modulating the expression of PI3K/AKT/mTOR and STAT3 proteins. STAT3 downregulation represses the expression of the critical ferroptosis protein glutathione peroxidase 4 (GPX4), aggravating the accumulation of reactive oxygen species (ROS) and depletion of glutathione (GSH). This redox imbalance triggers and accelerates ferroptosis. Additionally, A3 also induces apoptosis by damaging mitochondria and influencing MAPK signaling. Compound A3 arrested cells in the G2/M phase by regulating p53 expression. In an HCT-116 xenograft mouse model, compound A3 exhibited significant anti-cancer efficacy, with a tumor growth inhibition rate of 58.7 %. Therefore, compound A3 thus has the potential to serve as a lead compound for the development of new anti-tumor drugs.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433, Shanghai, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433, Shanghai, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Ya-Lan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
2
|
Wen L, Chan BCL, Qiu MH, Leung PC, Wong CK. Artemisinin and Its Derivatives as Potential Anticancer Agents. Molecules 2024; 29:3886. [PMID: 39202965 PMCID: PMC11356986 DOI: 10.3390/molecules29163886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Artemisinin is a natural sesquiterpene lactone obtained from the traditional Chinese medicinal herb Artemisia annua L. (qinghao). Artemisinin and its derivatives share an unusual endoperoxide bridge and are extensively used for malaria treatment worldwide. In addition to antimalarial activities, artemisinin and its derivatives have been reported to exhibit promising anticancer effects in recent decades. In this review, we focused on the research progress of artemisinin and its derivatives with potential anticancer activities. The pharmacological effects, potential mechanisms, and clinical trials in cancer therapy of artemisinin and its derivatives were discussed. This review may facilitate the future exploration of artemisinin and its derivatives as effective anticancer agents.
Collapse
Affiliation(s)
- Luan Wen
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Ibrahim MM, Azmi MN, Alhawarri MB, Kamal NNSNM, AbuMahmoud H. Synthesis, characterization and bioactivity of new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives. Mol Divers 2024:10.1007/s11030-024-10934-5. [PMID: 39009909 DOI: 10.1007/s11030-024-10934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Pyridone heterocycles, such as furo[2,3-b]pyridines, have emerged as prominent scaffolds in medicinal chemistry due to their versatile pharmacological properties, including significant anticancer activity. In this study, we successfully synthesized new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives from chalcones bearing 4-(benzyloxy)phenyl and dichlorothiophenyl subunits to explore their therapeutic potential against breast cancer. By employing a synthetic strategy involving Claisen-Schmidt condensation followed by sequential cyclizations and functional modifications, we synthesized and characterized four compounds (MI-S0, MI-S1, MI-S2, and MI-S3) using various spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, DEPT, H,H- and C,H-COSY, and HRMS. The in vitro cytotoxic activity of these compounds was evaluated against two breast cancer cell lines, MCF-7 and MDA-MB-231, and compared with a noncancerous breast cell line, MCF-10A. All compounds exhibited potent cytotoxic activities with minimal selectivity toward normal cells. Molecular docking studies targeting the serine/threonine kinase AKT1, estrogen receptor alpha (ERα), and human epidermal growth factor receptor 2 (HER2) revealed strong binding affinities, suggesting a mechanism involving the disruption of key cellular signaling pathways. These findings underscore the potential of furo[2,3-b]pyridine derivatives as promising candidates for further development into anticancer agents, laying the groundwork for future investigations into their selective therapeutic efficacy and molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad M Ibrahim
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan.
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, Irbid, 21110, Jordan
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Hasan AbuMahmoud
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan
| |
Collapse
|
4
|
Amengor CDK, Biniyam PD, Brobbey AA, Kekessie FK, Zoiku FK, Hamidu S, Gyan P, Abudey BM. N-Substituted Phenylhydrazones Kill the Ring Stage of Plasmodium falciparum. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6697728. [PMID: 38380127 PMCID: PMC10878751 DOI: 10.1155/2024/6697728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Antimalarial resistance has hampered the effective treatment of malaria, a parasitic disease caused by Plasmodium species. As part of our campaign on phenotypic screening of phenylhydrazones, a library of six phenylhydrazones was reconstructed and evaluated for their in vitro antimalarial and in silico receptor binding and pharmacokinetic properties. The structures of the phenylhydrazone hybrids were largely confirmed using nuclear magnetic resonance techniques. We identified two compounds which exhibited significant antimalarial potential against the ring stage (trophozoite) of 3D7 chloroquine-sensitive (CS) strain and DD2 chloroquine-resistant (CR) strains of Plasmodium falciparum with monosubstituted analogs bearing meta or para electron-donating groups showing significant activity in the single-digit micromolar range. Structure activity relationship is presented showing that electron-donating groups on the substituent hydrophobic pharmacophore are required for antimalarial activity. Compounds PHN6 and PHN3 were found to be the most potent with pIC50s (calculated form in vitro IC50s) of 5.37 and 5.18 against 3D7 CS and DD2 CR strains, respectively. Our selected ligands (PHN3 and PHN6) performed better when compared to chloroquine regarding binding affinity and molecular stability with the regulatory proteins of Plasmodium falciparum, hence predicted to be largely responsible for their in vitro activity. Pharmacokinetic prediction demonstrated that the phenylhydrazones may not cross the blood-brain barrier and are not P-glycoprotein (P-gp) substrates, a good absorption of 62% to 69%, and classified as a category IV compound based on toxicity grading.
Collapse
Affiliation(s)
| | - Prince Danan Biniyam
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Abena Amponsaa Brobbey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Klenam Kekessie
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg Campus, 118 College Drive, Hattiesburg, USA
| | - Felix Kwame Zoiku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Sherif Hamidu
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Patrick Gyan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Billy Mawunyo Abudey
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
5
|
Chan C, Kwan Sze NS, Suzuki Y, Ohira T, Suzuki T, Begley TJ, Dedon PC. Dengue virus exploits the host tRNA epitranscriptome to promote viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565734. [PMID: 37986976 PMCID: PMC10659268 DOI: 10.1101/2023.11.05.565734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The 40-50 RNA modifications of the epitranscriptome regulate posttranscriptional gene expression. Here we show that flaviviruses hijack the host tRNA epitranscriptome to promote expression of pro-viral proteins, with tRNA-modifying ALKBH1 acting as a host restriction factor in dengue virus infection. Early in the infection of human Huh-7 cells, ALKBH1 and its tRNA products 5-formylcytidine (f5C) and 2'-O-methyl-5-formylcytidine (f5Cm) were reduced. ALKBH1 knockdown mimicked viral infection, but caused increased viral NS3 protein levels during infection, while ALKBH1 overexpression reduced NS3 levels and viral replication, and increased f5C and f5Cm. Viral NS5, but not host FTSJ1, increased f5Cm levels late in infection. Consistent with reports of impaired decoding of leucine UUA codon by f5Cm-modified tRNALeu(CAA), ALKBH1 knockdown induced translation of UUA-deficient transcripts, most having pro-viral functions. Our findings support a dynamic ALKBH1/f5Cm axis during dengue infection, with virally-induced remodeling of the proteome by tRNA reprogramming and codon-biased translation.
Collapse
Affiliation(s)
- Cheryl Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuka Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Thomas J. Begley
- Department of Biological Sciences and The RNA Institute, College of Arts and Science, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Lynch J, Wang Y, Li Y, Kavdia K, Fukuda Y, Ranjit S, Robinson CG, Grace CR, Xia Y, Peng J, Schuetz JD. A PPIX-binding probe facilitates discovery of PPIX-induced cell death modulation by peroxiredoxin. Commun Biol 2023; 6:673. [PMID: 37355765 PMCID: PMC10290680 DOI: 10.1038/s42003-023-05024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.
Collapse
Affiliation(s)
- John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Youlin Xia
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Shi S, Luo H, Ji Y, Ouyang H, Wang Z, Wang X, Hu R, Wang L, Wang Y, Xia J, Cheng B, Bao B, Li X, Liao G, Xu B. Repurposing Dihydroartemisinin to Combat Oral Squamous Cell Carcinoma, Associated with Mitochondrial Dysfunction and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9595201. [PMID: 37273554 PMCID: PMC10239307 DOI: 10.1155/2023/9595201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC), with aggressive locoregional invasion, has a high rate of early recurrences and poor prognosis. Dihydroartemisinin (DHA), as a derivative of artemisinin, has been found to exert potent antitumor activity. Recent studies reported that DHA suppresses OSCC cell growth and viability through the regulation of reactive oxygen species (ROS) production and mitochondrial calcium uniporter. However, the mechanism underlying the action of DHA on OSCCs remains elusive. In the study, we observed that 159 genes were remarkably misregulated in primary OSCC tumors associated with DHA-inhibited pathways, supporting that OSCCs are susceptible to DHA treatment. Herein, our study showed that DHA exhibited promising effects to suppress OSCC cell growth and survival, and single-cell colony formation. Interestingly, the combination of DHA and cisplatin (CDDP) significantly reduced the toxicity of CDDP treatment alone on human normal oral cells (NOK). Moreover, DHA remarkably impaired mitochondrial structure and function, and triggered DNA damage and ROS generation, and activation of mitophagy. In addition, DHA induced leakage of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria, elevated Bax/cleaved-caspase 3 expression levels and compromised Bcl2 protein expression. In the OSCC tumor-xenograft mice model, DHA remarkably suppressed tumor growth and induced apoptosis of OSCCs in vivo. Intriguingly, a selective mitophagy inhibitor Mdivi-1 could significantly reinforce the anticancer activity of DHA treatment. DHA and Mdivi-1 can synergistically suppress OSCC cell proliferation and survival. These data uncover a previously unappreciated contribution of the mitochondria-associated pathway to the antitumor activity of DHA on OSCCs. Our study shed light on a new aspect of a DHA-based therapeutic strategy to combat OSCC tumors.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Renjie Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baicheng Bao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Calcium signaling induced by 15-deoxy-prostamide-J2 promotes cell death by activating PERK, IP3R, and the mitochondrial permeability transition pore. Oncotarget 2022; 13:1380-1396. [PMID: 36580536 PMCID: PMC9799328 DOI: 10.18632/oncotarget.28334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer in the US. Although immunotherapeutic checkpoint inhibitors and small-molecule kinase inhibitors have dramatically increased the survival of patients with melanoma, new or optimized therapeutic approaches are still needed to improve outcomes. 15-deoxy-Δ12,14-prostamide J2 (15d-PMJ2) is an investigational small-molecule that induces ER stress-mediated apoptosis selectively in tumor cells. Additionally, 15d-PMJ2 reduces melanoma growth in vivo. To assess the chemotherapeutic potential of 15d-PMJ2, the current study sought to uncover molecular pathways by which 15d-PMJ2 exerts its antitumor activity. B16F10 melanoma and JWF2 squamous cell carcinoma cell lines were cultured in the presence of pharmacological agents that prevent ER or oxidative stress as well as Ca2+ channel blockers to identify mechanisms of 15d-PMJ2 cell death. Our data demonstrated the ER stress protein, PERK, was required for 15d-PMJ2-induced death. PERK activation triggered the release of ER-resident Ca2+ through an IP3R sensitive pathway. Increased calcium mobilization led to mitochondrial Ca2+ overload followed by mitochondrial permeability transition pore (mPTP) opening and the deterioration of mitochondrial respiration. Finally, we show the electrophilic double bond located within the cyclopentenone ring of 15d-PMJ2 was required for its activity. The present study identifies PERK/IP3R/mPTP signaling as a mechanism of 15d-PMJ2 antitumor activity.
Collapse
|
9
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
10
|
Eradication of KRAS mutant colorectal adenocarcinoma by PEGylated gold nanoparticles-cetuximab conjugates through ROS-dependent apoptosis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Yang M, Tsui MG, Tsang JKW, Goit RK, Yao KM, So KF, Lam WC, Lo ACY. Involvement of FSP1-CoQ 10-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis 2022; 13:468. [PMID: 35585057 PMCID: PMC9117320 DOI: 10.1038/s41419-022-04924-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Retinal pigment epithelium (RPE) degeneration plays an important role in a group of retinal disorders such as retinal degeneration (RD) and age-related macular degeneration (AMD). The mechanism of RPE cell death is not yet fully elucidated. Ferroptosis, a novel regulated cell death pathway, participates in cancer and several neurodegenerative diseases. Glutathione peroxidase 4 (GPx-4) and ferroptosis suppressor protein 1 (FSP1) have been proposed to be two main regulators of ferroptosis in these diseases; yet, their roles in RPE degeneration remain elusive. Here, we report that both FSP1-CoQ10-NADH and GSH-GPx-4 pathways inhibit retinal ferroptosis in sodium iodate (SIO)-induced retinal degeneration pathologies in human primary RPE cells (HRPEpiC), ARPE-19 cell line, and mice. GSH-GPx-4 signaling was compromised after a toxic injury caused by SIO, which was aggravated by silencing GPx-4, and ferroptosis inhibitors robustly protected RPE cells from the challenge. Interestingly, while inhibition of FSP1 caused RPE cell death, which was aggravated by SIO exposure, overexpression of FSP1 effectively protected RPE cells from SIO-induced injury, accompanied by a significant down-regulation of CoQ10/NADH and lipid peroxidation. Most importantly, in vivo results showed that Ferrostatin-1 not only remarkably alleviated SIO-induced RPE cell loss, photoreceptor death, and retinal dysfunction but also significantly ameliorated the compromised GSH-GPx-4 and FSP1-CoQ10-NADH signaling in RPE cells isolated from SIO-induced RPE degeneration. These data describe a distinct role for ferroptosis in controlling RPE cell death in vitro and in vivo and may provide a new avenue for identifying treatment targets for RPE degeneration.
Collapse
Affiliation(s)
- Ming Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle Grace Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jessica Kwan Wun Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Ming Yao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Yu Y, Chen D, Wu T, Lin H, Ni L, Sui H, Xiao S, Wang C, Jiang S, Pan H, Li S, Jin X, Xie C, Cui R. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2-reactive oxygen species-mediated multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153932. [PMID: 35104762 DOI: 10.1016/j.phymed.2022.153932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Oxaliplatin based treatments are frequently used as chemotherapeutic methods for CRC, however, associated side effects and drug resistance often limit their clinical application. Dihydroartemisinin (DHA) induces apoptosis in various cancer cells by increasing reactive oxygen species (ROS) production. However, the direct target of DHA and underlying molecular mechanisms in oxaliplatin-mediated anti-tumor activities against CRC are unclear. METHODS We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, and colony formation assays to investigate cell phenotype alterations and ROS generation. We also used quantitative Real-Time PCR (qRT-PCR) and western blotting to measure relative gene and protein expression. Finally, an in vivo mouse xenograft model was used to assess the anti-tumor activity of oxaliplatin and DHA alone, and combinations. RESULTS DHA synergistically enhanced the anti-tumor activity of oxaliplatin in colon cancer cells by regulating ROS-mediated ER stress, signal transducer and activator of transcription 3 (STAT3), C-Jun-amino-terminal kinase (JNK), and p38 signaling pathways. Mechanistically, DHA increased ROS levels by inhibiting peroxiredoxin 2 (PRDX2) expression, and PRDX2 knockdown sensitized DHA-mediated cell growth inhibition and ROS production in CRC cells. A mouse xenograft model showed strong anti-tumor effects from combination treatments when compared with single agents. CONCLUSIONS We demonstrated an improved therapeutic strategy for CRC patients by combining DHA and oxaliplatin treatments.
Collapse
Affiliation(s)
- Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Didi Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Tao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Haizhen Lin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Hehuan Sui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Sisi Xiao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canwei Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suping Jiang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Huanle Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Shaotang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiance Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China.
| |
Collapse
|
13
|
White A, Parekh RU, Theobald D, Pakala P, Myers AL, Van Dross R, Sriramula S. Kinin B1R Activation Induces Endoplasmic Reticulum Stress in Primary Hypothalamic Neurons. Front Pharmacol 2022; 13:841068. [PMID: 35350763 PMCID: PMC8957924 DOI: 10.3389/fphar.2022.841068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in homeostatic functions including protein synthesis and transport, and the storage of free calcium. ER stress potentiates neuroinflammation and neurodegeneration and is a key contributor to the pathogenesis of neurogenic hypertension. Recently, we showed that kinin B1 receptor (B1R) activation plays a vital role in modulating neuroinflammation and hypertension. However, whether B1R activation results in the progression and enhancement of ER stress has not yet been studied. In this brief research report, we tested the hypothesis that B1R activation in neurons contributes to unfolded protein response (UPR) and the development of ER stress. To test this hypothesis, we treated primary hypothalamic neuronal cultures with B1R specific agonist Lys-Des-Arg9-Bradykinin (LDABK) and measured the components of UPR and ER stress. Our data show that B1R stimulation via LDABK, induced the upregulation of GRP78, a molecular chaperone of ER stress. B1R stimulation was associated with an increased expression and activation of transmembrane ER stress sensors, ATF6, IRE1α, and PERK, the critical components of UPR. In the presence of overwhelming ER stress, activated ER stress sensors can lead to oxidative stress, autophagy, or apoptosis. To determine whether B1R activation induces apoptosis we measured intracellular Ca2+ and extracellular ATP levels, caspases 3/7 activity, and cell viability. Our data show that LDABK treatment does increase Ca2+ and ATP levels but does not alter caspase activity or cell viability. These findings suggest that B1R activation initiates the UPR and is a key factor in the ER stress pathway.
Collapse
Affiliation(s)
- Acacia White
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Pranaya Pakala
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Ariel Lynn Myers
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Zhou X, Soto-Gamez A, Nijdam F, Setroikromo R, Quax WJ. Dihydroartemisinin-Transferrin Adducts Enhance TRAIL-Induced Apoptosis in Triple-Negative Breast Cancer in a P53-Independent and ROS-Dependent Manner. Front Oncol 2022; 11:789336. [PMID: 35047402 PMCID: PMC8762273 DOI: 10.3389/fonc.2021.789336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Fleur Nijdam
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
16
|
Sakr A, Rezq S, Ibrahim SM, Soliman E, Baraka MM, Romero DG, Kothayer H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities. J Enzyme Inhib Med Chem 2021; 36:1810-1828. [PMID: 34338135 PMCID: PMC8330735 DOI: 10.1080/14756366.2021.1956912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Novel quinazolinones conjugated with indole acetamide (4a–c), ibuprofen (7a–e), or thioacetohydrazide (13a,b, and 14a-d) were designed to increase COX-2 selectivity. The three synthesised series exhibited superior COX-2 selectivity compared with the previously reported quinazolinones and their NSAID analogue and had equipotent COX-2 selectivity as celecoxib. Compared with celecoxib, 4 b, 7c, and 13 b showed similar anti-inflammatory activity in vivo, while 13 b and 14a showed superior inhibition of the inflammatory mediator nitric oxide, and 7 showed greater antioxidant potential in macrophages cells. Moreover, all selected compounds showed improved analgesic activity and 13 b completely abolished the pain response. Additionally, compound 4a showed anticancer activity in tested cell lines HCT116, HT29, and HCA7. Docking results were consistent with COX-1/2 enzyme assay results. In silico studies suggest their high oral bioavailability. The overall findings for compounds (4a,b, 7c, 13 b, and 14c) support their potential role as anti-inflammatory agents.
Collapse
Affiliation(s)
- Asmaa Sakr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Abstract
BACKGROUND Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES Literature searches with keywords 'repurposing and cancer' books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/. AREAS OF AGREEMENT Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology Faculty, Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch, Galveston 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
19
|
Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021; 17:603-622. [PMID: 33613116 PMCID: PMC7893584 DOI: 10.7150/ijbs.50364] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
20
|
Damage-associated molecular pattern (DAMP) activation in melanoma: investigation of the immunogenic activity of 15-deoxy, Δ 12,14 prostamide J 2. Oncotarget 2020; 11:4788-4802. [PMID: 33447347 PMCID: PMC7779254 DOI: 10.18632/oncotarget.27856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic melanoma is the most deadly skin neoplasm in the United States. Outcomes for this lethal disease have improved dramatically due to the use of both targeted and immunostimulatory drugs. Immunogenic cell death (ICD) has emerged as another approach for initiating antitumor immunity. ICD is triggered by tumor cells that display damage-associated molecular patterns (DAMPs). These DAMP molecules recruit and activate dendritic cells (DCs) that present tumor-specific antigens to T cells which eliminate neoplastic cells. Interestingly, the expression of DAMP molecules occurs in an endoplasmic reticulum (ER) stress-dependent manner. We have previously shown that ER stress was required for the cytotoxic activity of the endocannabinoid metabolite, 15-deoxy, Δ12,14 prostamide J2 (15dPMJ2). As such, the current study investigates whether 15dPMJ2 induces DAMP signaling in melanoma. In B16F10 cells, 15dPMJ2 caused a significant increase in the cell surface expression of calreticulin (CRT), the release of ATP and the secretion of high-mobility group box 1 (HMGB1), three molecules that serve as surrogate markers of ICD. 15dPMJ2 also stimulated the cell surface expression of the DAMP molecules, heat shock protein 70 (Hsp70) and Hsp90. In addition, the display of CRT and ATP was increased by 15dPMJ2 to a greater extent in tumorigenic compared to non-tumorigenic melanocytes. Consistent with this finding, the activation of bone marrow-derived DCs was upregulated in co-cultures with 15dPMJ2-treated tumor compared to non-tumor melanocytes. Moreover, 15dPMJ2-mediated DAMP exposure and DC activation required the electrophilic cyclopentenone double bond within the structure of 15dPMJ2 and the ER stress pathway. These results demonstrate that 15dPMJ2 is a tumor-selective inducer of DAMP signaling in melanoma.
Collapse
|
21
|
Malami I, Bunza AM, Alhassan AM, Muhammad A, Abubakar IB, Yunusa A, Waziri PM, Etti IC. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling. J Biomol Struct Dyn 2020; 40:1347-1362. [PMID: 32964804 DOI: 10.1080/07391102.2020.1824811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aisha Muktar Bunza
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| |
Collapse
|