1
|
Yang J, Yang C, Feng J, Zhu F, Zhao Z. Predicting Microwave Ablation Early Efficacy in Pulmonary Malignancies via Δ Radiomics Models. J Comput Assist Tomogr 2024; 48:794-802. [PMID: 38657155 DOI: 10.1097/rct.0000000000001611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
OBJECTIVE This study aimed to explore the value of preoperative and postoperative computed tomography (CT)-based radiomic signatures and Δ radiomic signatures for evaluating the early efficacy of microwave ablation (MWA) for pulmonary malignancies. METHODS In total, 115 patients with pulmonary malignancies who underwent MWA treatment were categorized into response and nonresponse groups according to relevant guidelines and consensus. Quantitative image features of the largest pulmonary malignancies were extracted from CT noncontrast scan images preoperatively (time point 0, TP0) and immediately postoperatively (time point 1, TP1). Critical features were selected from TP0 and TP1 and as Δ radiomics signatures for building radiomics models. In addition, a combined radiomics model (C-RO) was developed by integrating radiomics parameters with clinical risk factors. Prediction performance was assessed using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS The radiomics model using Δ features outperformed the radiomics model using TP0 and TP1 features, with training and validation AUCs of 0.892, 0.808, and 0.787, and 0.705, 0.825, and 0.778, respectively. By combining the TP0, TP1, and Δ features, the logistic regression model exhibited the best performance, with training and validation AUCs of 0.945 and 0.744, respectively. The DCA confirmed the clinical utility of the Δ radiomics model. CONCLUSIONS A combined prediction model, including TP0, TP1, and Δ radiometric features, can be used to evaluate the early efficacy of MWA in pulmonary malignancies.
Collapse
Affiliation(s)
- Jing Yang
- From the School of Medicine, Shaoxing University
| | - Chen Yang
- Department of Radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing
| | - Jianju Feng
- Department of Radiology, Zhuji People's Hospital, Zhuji, Zhejiang, China
| | - Fandong Zhu
- Department of Radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing
| |
Collapse
|
2
|
Han X, Wang Y, Jia X, Zheng Y, Ding C, Zhang X, Zhang K, Cao Y, Li Y, Xia L, Zheng C, Huang J, Shi H. Predictive value of delta-radiomic features for prognosis of advanced non-small cell lung cancer patients undergoing immune checkpoint inhibitor therapy. Transl Lung Cancer Res 2024; 13:1247-1263. [PMID: 38973966 PMCID: PMC11225045 DOI: 10.21037/tlcr-24-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024]
Abstract
Background No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy. Methods Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well. Results The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability. Conclusions The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yujin Wang
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | | | - Xiaohui Zhang
- Clinical Solution, Philips Healthcare, Shanghai, China
| | - Kailu Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yunkun Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yumin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liming Xia
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
3
|
van Timmeren JE, Bussink J, Koopmans P, Smeenk RJ, Monshouwer R. Longitudinal Image Data for Outcome Modeling. Clin Oncol (R Coll Radiol) 2024:S0936-6555(24)00277-2. [PMID: 39003124 DOI: 10.1016/j.clon.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
In oncology, medical imaging is crucial for diagnosis, treatment planning and therapy execution. Treatment responses can be complex and varied and are known to involve factors of treatment, patient characteristics and tumor microenvironment. Longitudinal image analysis is able to track temporal changes, aiding in disease monitoring, treatment evaluation, and outcome prediction. This allows for the enhancement of personalized medicine. However, analyzing longitudinal 2D and 3D images presents unique challenges, including image registration, reliable segmentation, dealing with variable imaging intervals, and sparse data. This review presents an overview of techniques and methodologies in longitudinal image analysis, with a primary focus on outcome modeling in radiation oncology.
Collapse
Affiliation(s)
- J E van Timmeren
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - J Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - P Koopmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Xue T, Zhu L, Tao Y, Ye X, Yu H. Development and validation of an interpretable delta radiomics-based model for predicting invasive ground-glass nodules in lung adenocarcinoma: a retrospective cohort study. Quant Imaging Med Surg 2024; 14:4086-4097. [PMID: 38846292 PMCID: PMC11151254 DOI: 10.21037/qims-23-1711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
Background Radiomics models based on computed tomography (CT) can be used to differentiate invasive ground-glass nodules (GGNs) in lung adenocarcinoma to help determine the optimal timing of GGN resection, improve the accuracy of prognostic prediction, and reduce unnecessary surgeries. However, general radiomics does not fully utilize follow-up data and often lacks model interpretation. Therefore, this study aimed to build an interpretable model based on delta radiomics to predict GGN invasiveness. Methods A retrospective analysis was conducted on a set of 303 GGNs that were surgically resected and confirmed as lung adenocarcinoma in Shanghai Chest Hospital between September 2017 and August 2022. Delta radiomics and general radiomics features were extracted from preoperative follow-up CT scans and combined with clinical features for modeling. The performance of the delta radiomics-clinical model was compared to that of the radiomics-clinical model. Additionally, Shapley additive explanations (SHAP) was employed to interpret and visualize the model. Results Two models were constructed using a combination of 34 radiomic features and 10 delta radiomic features, along with 14 clinical features. The radiomics-clinical model and the delta radiomics-clinical model exhibited area under the curve (AUC) of 0.986 [95% confidence interval (CI): 0.977-0.995] and 0.974 (95% CI: 0.959-0.987) in the training set, respectively, and 0.949 (95% CI: 0.908-0.978) and 0.927 (95% CI: 0.879-0.966) in the test set, respectively. The DeLong test of the two models showed no statistical significance (P=0.10) in the test set. SHAP was used to output a summary plot for global interpretation, which showed that preoperative mass, three-dimensional (3D) length, mean diameter, volume, mean CT value, and delta radiomics feature original_firstorder_RootMeanSquared were the relatively more important features in the model. Waterfall plots for local interpretation showed how each feature contributed to the prediction output of a given GGN. Conclusions The delta radiomics-based model proved to be a helpful tool for predicting the invasiveness of GGNs in lung adenocarcinoma. This approach offers a precise, noninvasive alternative in informing clinical decision-making. Additionally, SHAP provided insightful and user-friendly interpretations and visualizations of the model, enhancing its clinical applicability.
Collapse
Affiliation(s)
- Tingjia Xue
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Tao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaodan Ye
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Abbas E, Fanni SC, Bandini C, Francischello R, Febi M, Aghakhanyan G, Ambrosini I, Faggioni L, Cioni D, Lencioni RA, Neri E. Delta-radiomics in cancer immunotherapy response prediction: A systematic review. Eur J Radiol Open 2023; 11:100511. [PMID: 37520768 PMCID: PMC10371799 DOI: 10.1016/j.ejro.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.
Collapse
Affiliation(s)
- Engy Abbas
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
| | | | - Claudio Bandini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Maria Febi
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Emanuele Neri
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Jin W, Shen L, Tian Y, Zhu H, Zou N, Zhang M, Chen Q, Dong C, Yang Q, Jiang L, Huang J, Yuan Z, Ye X, Luo Q. Improving the prediction of Spreading Through Air Spaces (STAS) in primary lung cancer with a dynamic dual-delta hybrid machine learning model: a multicenter cohort study. Biomark Res 2023; 11:102. [PMID: 37996894 PMCID: PMC10668492 DOI: 10.1186/s40364-023-00539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Reliable pre-surgical prediction of spreading through air spaces (STAS) in primary lung cancer is essential for precision treatment and surgical decision-making. We aimed to develop and validate a dual-delta deep-learning and radiomics model based on pretreatment computed tomography (CT) image series to predict the STAS in patients with lung cancer. METHOD Six hundred seventy-four patients with pre-surgery CT follow-up scans (with a minimum interval of two weeks) and primary lung cancer diagnosed by surgery were retrospectively recruited from three Chinese hospitals. The training cohort and internal validation cohort, comprising 509 and 76 patients respectively, were selected from Shanghai Chest Hospital; the external validation cohorts comprised 36 and 53 patients from two other centers, respectively. Four imaging signatures (classic radiomics features and deep learning [DL] features, delta-radiomics and delta-DL features) reflecting the STAS status were constructed from the pretreatment CT images by comprehensive methods including handcrafting, 3D views extraction, image registration and subtraction. A stepwise optimized three-step procedure, including feature extraction (by DL and time-base radiomics slope), feature selection (by reproducibility check and 45 selection algorithms), and classification (32 classifiers considered), was applied for signature building and methodology optimization. The interpretability of the proposed model was further assessed with Grad-CAM for DL-features and feature ranking for radiomics features. RESULTS The dual-delta model showed satisfactory discrimination between STAS and non-STAS and yielded the areas under the receiver operating curve (AUCs) of 0.94 (95% CI, 0.92-0.96), 0.84 (95% CI, 0.82-0.86), and 0.84 (95% CI, 0.83-0.85) in the internal and two external validation cohorts, respectively, with interpretable core feature sets and feature maps. CONCLUSION The coupling of delta-DL model with delta-radiomics features enriches information such as anisotropy of tumor growth and heterogeneous changes within the tumor during the radiological follow-up, which could provide valuable information for STAS prediction in primary lung cancer.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Leilei Shen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongda Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ningyuan Zou
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Mengwei Zhang
- School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Qisheng Yang
- School of Integrated Circuits & Beijing National Research On Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zheng Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaodan Ye
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
7
|
Zeng Q, Ke M, Zhong L, Zhou Y, Zhu X, He C, Liu L. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy. Acad Radiol 2023; 30:1638-1647. [PMID: 36564256 DOI: 10.1016/j.acra.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics at baseline and after two cycles of neoadjuvant therapy (NAT) and associated longitudinal changes for early prediction of the NAT response in patients with breast cancer. MATERIALS AND METHODS One hundred seventeen patients with breast cancer who underwent DCE-MRI before NAT and after two cycles of NAT from April 2019 to November 2021 were enrolled retrospectively. Patients were randomly divided into a training set (n = 81) and a test set (n = 36) at a ratio of 7:3. Clinical-pathological data and the relative tumor maximum diameter regression value (diameter%) were also collected. A total of 851 radiomic features were extracted from the phase with the most pronounced tumor enhancement on DCE-MRI T1 imaging acquired both pre- and post-treatment. Delta and delta% radiomics features were also calculated. The Least Absolute Shrinkage and Selection Operator (LASSO) method was applied to select features, and a logistic regression model was used to calculate pre-NAT, early-NAT, delta, and delta% radscores and then select among four radscores to build a Fusion radiomics model. The final clinical-radiomics model was constructed by combining fusion radscores and clinical-pathological variables. The discrimination and clinical utility of the models were further evaluated and compared. RESULTS The area under the curve (AUC) values of the fusion radiomics model based on pre-NAT, Delta, and Delta% radscores were 0.868 of 0.825. The clinical-radiomics model integrating Fusion radscores and clinical-pathological variables achieved AUC values of 0.920 of 0.884, which were higher than those of the clinical model constructed by AUC values (0.858/0.831), although no significant improvement was observed in the test set (Delong test, p = 0.196). Decision curve analysis (DCA) showed that the clinical-radiomics model demonstrated more clinical utility than the clinical model. CONCLUSION DCE-MRI-based radiomics features may have potential for pathological complete response (pCR) prediction in the early phase of NAT. By combining radiomics features and clinical-pathological characteristics, higher diagnostic performance can be achieved.
Collapse
Affiliation(s)
- Qiao Zeng
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Mengmeng Ke
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Linhua Zhong
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Yongjie Zhou
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Xuechao Zhu
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Chongwu He
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.).
| |
Collapse
|
8
|
Ma Y, Li J, Xu X, Zhang Y, Lin Y. The CT delta-radiomics based machine learning approach in evaluating multiple primary lung adenocarcinoma. BMC Cancer 2022; 22:949. [PMID: 36057553 PMCID: PMC9440600 DOI: 10.1186/s12885-022-10036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Object To evaluate the difference between multiple primary lung adenocarcinoma (MPLA) and solitary primary lung adenocarcinoma (SPLA) by delta-radiomics based machine learning algorithms in CT images. Methods A total of 1094 patients containing 268 MPLAs and 826 SPLAs were recruited for this retrospective study between 2014 to 2020. After the segmentation of volume of interest, the radiomic features were automatically calculated. The patients were categorized into the training set and testing set by a random proportion of 7:3. After feature selection, the relevant classifiers were constructed by the machine learning algorithms of Bayes, forest, k-nearest neighbor, logistic regression, support vector machine, and decision tree. The relative standard deviation (RSD) was calculated and the classification model with minimal RSD was chosen for delta-radiomics analysis to explore the variation of tumor during follow-up surveillance in the cohort of 225 MPLAs and 320 SPLAs. According to the different follow-up duration, it was divided into group A (3–12 months), group B (13–24 months), and group C (25–48 months). Then the corresponding delta-radiomics classifiers were developed to predict MPLAs. The area under the receiver operator characteristic curve (AUC) with 95% confidence interval (CI) was quantified to evaluate the efficiency of the model. Results To radiomics analysis, the forest classifier (FC-radio) with the minimal RSD showed the better stability with AUCs of 0.840 (95%CI, 0.810–0.867) and 0.670 (95%CI, 0.611–0.724) in the training and testing set. The AUCs of the forest classifier based on delta-radiomics (FC-delta) were higher than those of FC-radio. In addition, with the extension of follow-up duration, the performance of FC-delta in Group C were the best with AUCs of 0.998 (95%CI, 0.993–1.000) in the training set and 0.853 (95%CI, 0.752–0.940) in the testing set. Conclusions The machine-learning approach based on radiomics and delta-radiomics helped to differentiate SPLAs from MPLAs. The FC-delta with a longer follow-up duration could better distinguish between SPLAs and MPLAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10036-1.
Collapse
Affiliation(s)
- Yanqing Ma
- Department of Radiology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Radiology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiren Xu
- Department of Radiology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Radiology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Lin
- Department of Radiology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Yu Z, Xu C, Zhang Y, Ji F. A triple-classification for the evaluation of lung nodules manifesting as pure ground-glass sign: a CT-based radiomic analysis. BMC Med Imaging 2022; 22:133. [PMID: 35896975 PMCID: PMC9327229 DOI: 10.1186/s12880-022-00862-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/21/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To construct a noninvasive radiomics model for evaluating the pathological degree and an individualized treatment strategy for patients with the manifestation of ground glass nodules (GGNs) on CT images. METHODS The retrospective primary cohort investigation included patients with GGNs on CT images who underwent resection between June 2015 and June 2020. The intratumoral regions of interest were segmented semiautomatically, and radiomics features were extracted from the intratumoral and peritumoral regions. After feature selection by ANOVA, Max-Relevance and Min-Redundancy (mRMR) and Least Absolute Shrinkage and Selection Operator (Lasso) regression, a random forest (RF) model was generated. Receiver operating characteristic (ROC) analysis was calculated to evaluate each classification. Shapley additive explanations (SHAP) was applied to interpret the radiomics features. RESULTS In this study, 241 patients including atypical adenomatous hyperplasia (AAH) or adenocarcinoma in situ (AIS) (n = 72), minimally invasive adenocarcinoma (MIA) (n = 83) and invasive adenocarcinoma (IAC) (n = 86) were selected for radiomics analysis. Three intratumoral radiomics features and one peritumoral feature were finally identified by the triple RF classifier with an average area under the curve (AUC) of 0.960 (0.963 for AAH/AIS, 0.940 for MIA, 0.978 for IAC) in the training set and 0.944 (0.955 for AAH/AIS, 0.952 for MIA, 0.926 for IAC) in the testing set for evaluation of the GGNs. CONCLUSION The triple classification based on intra- and peritumoral radiomics features derived from the noncontrast CT images had satisfactory performance and may be used as a noninvasive tool for preoperative evaluation of the pure ground-glass nodules and developing of individualized treatment strategies.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Chenxi Xu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Ying Zhang
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fengying Ji
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
10
|
A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules. Clin Radiol 2022; 77:e741-e748. [PMID: 35840455 DOI: 10.1016/j.crad.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
AIM To investigate and compare the performance of conventional, radiomic, combined, and delta-radiomic features to predict the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules (GGNs). MATERIALS AND METHODS The present retrospective study included 216 GGNs confirmed surgically as pulmonary adenocarcinomas. All the thin-section computed tomography (CT) images were imported into the software of the United Imaging Intelligence research portal, and radiomic features were extracted with three-dimensional (3D) regions of interest. Least Absolute Shrinkage and Selection Operator was used to select the optimal radiomic features. Four models were constructed, including conventional, radiomic, combined conventional and radiomic, and delta-radiomic models. The receiver operating characteristic curves were built to evaluate the validity of these. RESULTS The type, long diameter, shape, margin, vacuole, air bronchus, vascular convergence, and pleural traction exhibited significant differences between pre-invasive lesions (PILs)/minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) groups were selected for conventional model building. Nine radiomic features were selected to build the radiomic model. The four models indicated optimal performance (AUC > 0.7). The radiomic and combined models exhibited the highest diagnostic efficiency, and their AUC were 0.89 and 0.88 in the training set, and 0.87 and 0.88 in the validation set, respectively. The delta-radiomic model indicated that the AUC was 0.83 in the training set, and 0.76 in the validation set. Finally, the conventional model exhibited an AUC in the training and validation sets of 0.78 and 0.76. CONCLUSIONS The radiomic model and combined model, in particular, and the delta-radiomic model all demonstrated improved diagnostic efficiency in differentiating IA from PIL/MIA than that of the conventional model.
Collapse
|
11
|
Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Front Oncol 2022; 12:824509. [PMID: 35530350 PMCID: PMC9074388 DOI: 10.3389/fonc.2022.824509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to establish an MRI radiomics model and a Delta radiomics model to predict tumor retraction after induction chemotherapy (IC) combined with concurrent chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic areas and to validate its efficacy. Methods A total of 272 patients (155 in the training set, 66 in the internal validation set, and 51 in the external validation set) with biopsy pathologically confirmed primary NPC who were screened for pretreatment MRI were retrospectively collected. The NPC tumor was delineated as a region of interest in the two sequenced images of MRI before treatment and after IC, followed by radiomics feature extraction. With the use of maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, logistic regression was performed to establish pretreatment MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index was taken; the receiver operating characteristic (ROC) curve, calibration curve, and decision curve were drawn to evaluate the predictive efficacy of different models. Results Seven optimal feature subsets were selected from the pretreatment MRI radiomics model, and twelve optimal subsets were selected from the Delta radiomics model. The area under the ROC curve, accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and 0.958, respectively. Conclusion The pretreatment MRI radiomics model and pre- and post-IC Delta radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Collapse
Affiliation(s)
- Yuzhen Xi
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Ji
- Department of Radiology, Liangzhu Hospital, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Haonan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengze Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University, Hangzhou, China
| | - Feng Jiang
- Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key Laboratory of Radiation Oncology, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| | - Zhongxiang Ding
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| |
Collapse
|
12
|
Ma Y, Guan Z, Liang H, Cao H. Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma Through CT-Based Tumoral and Peritumoral Radiomics. Front Oncol 2022; 12:831112. [PMID: 35237524 PMCID: PMC8884273 DOI: 10.3389/fonc.2022.831112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Objectives This study aims to establish predictive logistic models for the World Health Organization/International Society of Urological Pathology (WHO/ISUP) grades of clear cell renal cell carcinoma (ccRCC) based on tumoral and peritumoral radiomics. Methods A cohort of 370 patients with pathologically confirmed ccRCCs were included in this retrospective study between January 2014 and December 2020 according to the WHO/ISUP grading system. The volume of interests of triphasic computed tomography images were depicted manually using the “itk-SNAP” software, and the radiomics features were calculated. The cohort was segmented into the training cohort and validation cohort with a random proportion of 7:3. After extraction of radiomics features by analysis of variance (ANOVA) or Mann-Whitney U test, correlation analysis, and the least absolute shrinkage and selection operator (LASSO) method, the logistic models of tumoral radiomics (LR-tumor) and peritumoral radiomics (LR-peritumor) were developed. The LR-peritumor was subdivided into LR-peritumor-2mm, LR-peritumor-5mm, and LR-peritumor-10mm, and the LR-peritumor-2mm was subdivided into LR-peritumor-kid and LR-peritumor-fat based on the neighboring tissues of ccRCCs. Finally, an integrative model of tumoral and peritumoral radiomics (LR-tumor/peritumor) was built. The value of areas under the receiver operator characteristics curve (AUCs) was calculated to assess the efficacy of the models. Results There were 209 low-grade and 161 high-grade ccRCCs enrolled. The AUCs of LR-tumor in CT images of venous phase were 0.802 in the training cohort and 0.796 in the validation cohort. The AUCs were higher in the LR-peritumor-2mm than those in LR-peritumor-5mm and LR-peritumor-10mm (training cohort: 0.788 vs. 0.788 and 0.759; validation cohort: 0.787 vs. 0.785 and 0.758). Moreover, the AUCs of LR-peritumor-fat were higher compared with those of LR-peritumor-kid. The LR-tumor/peritumor displayed the highest AUCs of 0.812 in the training cohort and 0.804 in the validation cohort. Conclusions The tumoral and peritumoral radiomics helped to predict the WHO/ISUP grades of ccRCCs. On the diagnostic performance of peritumoral radiomics, better results were seen for the LR-peritumor-2mm and LR-peritumor-fat.
Collapse
Affiliation(s)
- Yanqing Ma
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zheng Guan
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hong Liang
- The Department of Radiology, Hangzhou Medical College, Hangzhou, China
| | - Hanbo Cao
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Exploring Response to Immunotherapy in Non-Small Cell Lung Cancer Using Delta-Radiomics. Cancers (Basel) 2022; 14:cancers14020350. [PMID: 35053513 PMCID: PMC8773717 DOI: 10.3390/cancers14020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/16/2023] Open
Abstract
Delta-radiomics is a branch of radiomics in which features are confronted after time or after introducing an external factor (such as treatment with chemotherapy or radiotherapy) to extrapolate prognostic data or to monitor a certain condition. Immune checkpoint inhibitors (ICIs) are currently revolutionizing the treatment of non-small cell lung cancer (NSCLC); however, there are still many issues in defining the response to therapy. Contrast-enhanced CT scans of 33 NSCLC patients treated with ICIs were analyzed; altogether, 43 lung lesions were considered. The radiomic features of the lung lesions were extracted from CT scans at baseline and at first reassessment, and their variation (delta, Δ) was calculated by means of the absolute difference and relative reduction. This variation was related to the final response of each lesion to evaluate the predictive ability of the variation itself. Twenty-seven delta features have been identified that are able to discriminate radiologic response to ICIs with statistically significant accuracy. Furthermore, the variation of nine features significantly correlates with pseudo-progression.
Collapse
|
14
|
Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med 2021; 126:1571-1583. [PMID: 34865190 DOI: 10.1007/s11547-021-01436-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: "radiomics", "texture", and "delta". Studies were analysed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable. Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Annunziata
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessandra Farchione
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
15
|
Ma YQ, Wen Y, Liang H, Zhong JG, Pang PP. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. World J Gastroenterol 2021; 27:6465-6475. [PMID: 34720535 PMCID: PMC8517787 DOI: 10.3748/wjg.v27.i38.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Synchronous liver metastasis (SLM) is an indicator of poor prognosis for colorectal cancer (CRC). Nearly 50% of CRC patients develop hepatic metastasis, with 15%-25% of them presenting with SLM. The evaluation of SLM in CRC is crucial for precise and personalized treatment. It is beneficial to detect its response to chemotherapy and choose an optimal treatment method.
AIM To construct prediction models based on magnetic resonance imaging (MRI)-radiomics and clinical parameters to evaluate the chemotherapy response in SLM of CRC.
METHODS A total of 102 CRC patients with 223 SLM lesions were identified and divided into disease response (DR) and disease non-response (non-DR) to chemotherapy. After standardizing the MRI images, the volume of interest was delineated and radiomics features were calculated. The MRI-radiomics logistic model was constructed after methods of variance/Mann-Whitney U test, correlation analysis, and least absolute shrinkage and selection operator in feature selecting. The radiomics score was calculated. The receiver operating characteristics curves by the DeLong test were analyzed with MedCalc software to compare the validity of all models. Additionally, the area under curves (AUCs) of DWI, T2WI, and portal phase of contrast-enhanced sequences radiomics model (Ra-DWI, Ra-T2WI, and Ra-portal phase of contrast-enhanced sequences) were calculated. The radiomics-clinical nomogram was generated by combining radiomics features and clinical characteristics of CA19-9 and clinical N staging.
RESULTS The AUCs of the MRI-radiomics model were 0.733 and 0.753 for the training (156 lesions with 68 non-DR and 88 DR) and the validation (67 lesions with 29 non-DR and 38 DR) set, respectively. Additionally, the AUCs of the training and the validation set of Ra-DWI were higher than those of Ra-T2WI and Ra-portal phase of contrast-enhanced sequences (training set: 0.652 vs 0.628 and 0.633, validation set: 0.661 vs 0.575 and 0.543). After chemotherapy, the top four of twelve delta-radiomics features of Ra-DWI in the DR group belonged to gray-level run-length matrices radiomics parameters. The radiomics-clinical nomogram containing radiomics score, CA19-9, and clinical N staging was built. This radiomics-clinical nomogram can effectively discriminate the patients with DR from non-DR with a higher AUC of 0.809 (95% confidence interval: 0.751-0.858).
CONCLUSION MRI-radiomics is conducive to predict chemotherapeutic response in SLM patients of CRC. The radiomics-clinical nomogram, involving radiomics score, CA19-9, and clinical N staging is more effective in predicting chemotherapeutic response.
Collapse
Affiliation(s)
- Yan-Qing Ma
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Yang Wen
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Hong Liang
- Department of Radiology, Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Jian-Guo Zhong
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Pei-Pei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
16
|
Ma Y. Editorial for "Assessment of Repeatability, Reproducibility, and Performances of T2-Mapping-Based Radiomics Features: A Comparative Study". J Magn Reson Imaging 2021; 54:549-550. [PMID: 33634896 DOI: 10.1002/jmri.27582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College 310000, Hangzhou, China
| |
Collapse
|
17
|
Ma Y, Xu X, Pang P, Wen Y. A CT-Based Tumoral and Mini-Peritumoral Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 13:1417-1425. [PMID: 33603485 PMCID: PMC7886092 DOI: 10.2147/cmar.s297094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/20/2021] [Indexed: 01/13/2023] Open
Abstract
Objective This study aimed to evaluate the role of tumor and mini-peritumor in the context of CT-based radiomics analysis to differentiate fat-poor angiomyolipoma (fp-AML) from clear cell renal cell carcinoma (ccRCC). Methods A total of 58 fp-AMLs and 172 ccRCCs were enrolled. The volume of interest (VOI) was manually delineated in the standardized CT images and radiomics features were automatically calculated with software. After methods of feature selection, the CT-based logistic models including tumoral model (Ra-tumor), mini-peritumoral model (Ra-peritumor), perirenal model (Ra-Pr), perifat model (Ra-Pf), and tumoral+perirenal model (Ra-tumor+Pr) were constructed. The area under curves (AUCs) were calculated by DeLong test to evaluate the efficiency of logistic models. Results The AUCs of Ra-peritumor of nephrographic phase (NP) were slightly higher than those of corticomedullary phase (CMP). Furthermore, the Ra-Pr showed significant higher efficiency than the Ra-Pf, and relative more optimal radiomics features were selected in the Ra-Pr than Ra-Pf. The Ra-tumor+Pr combined tumoral and perirenal radiomics analysis was of most significant in distinction compared with Ra-tumor and Ra-peritumor. Conclusion The validity of NP to differentiate fp-AML from ccRCC was slightly higher than that of CMP. To the NP analysis, the Ra-Pr was superior to the Ra-Pf in distinction, and the lesions invaded to the perirenal tissue more severely than to the perifat tissue. It is important to the individual therapeutic surgeries according to the different lesion location. The pooled tumoral and perirenal radiomics analysis was the most promising approach in distinguishing fp-AML and ccRCC.
Collapse
Affiliation(s)
- Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Xiren Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, 310000, People's Republic of China
| | - Yang Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| |
Collapse
|