1
|
Romeo M, Dallio M, Scognamiglio F, Ventriglia L, Cipullo M, Coppola A, Tammaro C, Scafuro G, Iodice P, Federico A. Role of Non-Coding RNAs in Hepatocellular Carcinoma Progression: From Classic to Novel Clinicopathogenetic Implications. Cancers (Basel) 2023; 15:5178. [PMID: 37958352 PMCID: PMC10647270 DOI: 10.3390/cancers15215178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignancy with increasing incidences and mortalities worldwide. In Western countries, the progressive affirmation of Non-alcoholic Fatty Liver Disease (NAFLD) as the main chronic liver disorder in which HCC occurrence is appreciable even in non-cirrhotic stages, constitutes a real health emergency. In light of this, a further comprehension of molecular pathways supporting HCC onset and progression represents a current research challenge to achieve more tailored prognostic models and appropriate therapeutic approaches. RNA non-coding transcripts (ncRNAs) are involved in the regulation of several cancer-related processes, including HCC. When dysregulated, these molecules, conventionally classified as "small ncRNAs" (sncRNAs) and "long ncRNAs" (lncRNAs) have been reported to markedly influence HCC-related progression mechanisms. In this review, we describe the main dysregulated ncRNAs and the relative molecular pathways involved in HCC progression, analyzing their implications in certain etiologically related contexts, and their applicability in clinical practice as novel diagnostic, prognostic, and therapeutic tools. Finally, given the growing evidence supporting the immune system response, the oxidative stress-regulated mechanisms, and the gut microbiota composition as relevant emerging elements mutually influencing liver-cancerogenesis processes, we investigate the relationship of ncRNAs with this triad, shedding light on novel pathogenetic frontiers of HCC progression.
Collapse
Affiliation(s)
- Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Flavia Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Lorenzo Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marina Cipullo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Annachiara Coppola
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Chiara Tammaro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Giuseppe Scafuro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Patrizia Iodice
- Division of Medical Oncology, AORN Azienda dei Colli, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| |
Collapse
|
2
|
Zhang L, Hong J, Chen W, Zhang W, Liu X, Lu J, Tang H, Yang Z, Zhou K, Xie H, Jia C, Jiang D, Zheng S. DBF4 Dependent Kinase Inhibition Suppresses Hepatocellular Carcinoma Progression and Potentiates Anti-Programmed Cell Death-1 Therapy. Int J Biol Sci 2023; 19:3412-3427. [PMID: 37497004 PMCID: PMC10367558 DOI: 10.7150/ijbs.80351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
The progression of hepatocellular carcinoma (HCC) remains a huge clinical challenge, and elucidation of the underlying molecular mechanisms is critical to develop effective therapeutic strategy. Dumbbell former 4 (DBF4) complexes with cell division cycle 7 (CDC7) to form DBF4-dependent kinase (DDK), playing instrumental roles in tumor cell survival, whereas its roles in HCC remain elusive. This study revealed that DBF4 expression was upregulated in HCC and constituted an independent prognostic factor of patient survival. We identified p65 as an upstream inducer which increased DBF4 expression by directly binding to its promoter. DBF4 accelerated HCC cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, DBF4 complexed with CDC7 to bind to the coiled coil domain of STAT3 and activate STAT3 signaling through XPO1-mediated nuclear exportation. Notably, p65 enhanced the nuclear transport of DDK and DDK-STAT3 interaction by transcriptionally upregulating XPO1. DBF4 expression positively correlated with activated STAT3 and XPO1 in HCC tissues. Furthermore, combining DDK inhibitor XL413 with anti-PD-1 immunotherapy dramatically suppressed HCC growth and prolonged the survival of HCC-bearing mouse. Our findings reveal that DDK activates STAT3 pathway and facilitates HCC progression, and demonstrate the proof of the concept of targeting DDK to improve the efficacy of HCC immunotherapy.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Medical Oncology, Sir Runrun Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Changku Jia
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Donghai Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| |
Collapse
|
3
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
4
|
Rui T, Wang K, Xiang A, Guo J, Tang N, Jin X, Lin Y, Liu J, Zhang X. Serum Exosome-Derived piRNAs Could Be Promising Biomarkers for HCC Diagnosis. Int J Nanomedicine 2023; 18:1989-2001. [PMID: 37077942 PMCID: PMC10108868 DOI: 10.2147/ijn.s398462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
Background Serum exosome-based liquid biopsy has significant advantages for screening and diagnosing hepatocellular carcinoma (HCC). P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are novel small silencing RNAs that have been identified to function in cancer-related signalling pathways. However, studies on the presence of piRNAs in serum exosomes from HCC patients and their diagnostic values in HCC are not well reported. Our aim is to validate serum exosome-derived piRNAs as the valuable component of liquid biopsy for diagnosing HCC. Methods We used small RNA (sRNA) sequencing to profile piRNAs from serum exosomes and describe the base distribution characteristics of serum exosome-derived piRNAs. Serum exosomes from 125 HCC patients and 44 nontumor donors were included in this study. Results We found that piRNAs were components of serum exosomes from HCC patients. A total of 253 differentially expressed serum exosome-derived piRNAs were screened from HCC compared with the piRNAs from nontumor donors. Serum exosome-derived piRNAs from HCC displayed a distinctive base distribution. To further confirm the potential diagnostic value of serum exosome-derived piRNAs in HCC, we detected the levels of the top 5 upregulated piRNAs in our Chinese cohort. The training set and validation set both showed that all 5 piRNAs were dramatically increased in the serum exosomes from HCC compared with the piRNAs from non-tumour donors. The piRNAs could strongly identify HCC patients from non-tumour donors according to the area under the receiver operating characteristic (AUROC) model. Additionally, the piRNAs could also present significant values for the diagnosis of HCC with low tumour burden. Conclusion piRNAs enriched the components of serum exosomes from HCC and could serve as promising biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Tao Rui
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of ZheJiang Province, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Correspondence: Tao Rui; Xiaobing Zhang, Email ;
| | - Kai Wang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of ZheJiang Province, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Aizhai Xiang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jufeng Guo
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Ning Tang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Xin Jin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Yimou Lin
- Department of Surgery, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, Hangzhou, 310003, People’s Republic of China
| | - Jian Liu
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Xiaobing Zhang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of ZheJiang Province, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| |
Collapse
|
5
|
Serum-Exosome-Derived miRNAs Serve as Promising Biomarkers for HCC Diagnosis. Cancers (Basel) 2022; 15:cancers15010205. [PMID: 36612201 PMCID: PMC9818484 DOI: 10.3390/cancers15010205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Serum exosomes are emerging as key liquid biopsy biomarkers for the early diagnosis of cancer. However, the proportion and distribution of small RNA (sRNA) species from serum exosomes of hepatocellular carcinoma (HCC) patients remain unclear. Effective and reliable biomarkers for HCC diagnosis should be explored. METHODS In this study, we aimed to use sRNA sequencing to profile the sRNAs of serum exosomes in HCC and non-tumor donors. The serum exosomes of 124 HCC patients and 46 non-tumor donors were enrolled for detecting the values of the potential biomarkers for the diagnosis of HCC. RESULTS We found that miRNAs accounted for the maximal percentage of all types of sRNAs both in the serum exosomes of HCC patients and non-tumor donors. This indicated that the serum-exosome-derived microRNAs (miRNAs) were the most valuable as potential biomarkers in HCC diagnosis. Then, miRNAs were set as research candidates. In our Chinese cohorts, three serum-exosome-derived miRNAs (miR-122-5p, let-7d-5p, and miR-425-5p) could be promising biomarkers for distinguishing HCC patients from non-tumor donors. In addition, they were preferred for the early diagnosis of HCC. We also presented the base distribution of some novel serum-exosome-derived miRNAs and described the potential values as biomarkers. CONCLUSIONS The results suggested that the serum-exosome-derived miRNAs were the most crucial sRNA species and they highlighted the potential of serum-exosome-derived miRNAs as promising biomarkers for HCC diagnosis.
Collapse
|
6
|
Rui T, Xiang A, Guo J, Tang N, Lin X, Jin X, Liu J, Zhang X. Mir-4728 is a Valuable Biomarker for Diagnostic and Prognostic Assessment of HER2-Positive Breast Cancer. Front Mol Biosci 2022; 9:818493. [PMID: 35655761 PMCID: PMC9152170 DOI: 10.3389/fmolb.2022.818493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains one of the most common malignancies in female cancer patients. The rapid and accurate diagnosis of human epidermal growth factor receptor 2 (HER2) status is indispensable for breast cancer patients. The pre-miR-4728 (mir-4728) is encoded within an intron of the HER2 gene. We showed here that mir-4728 was the most significantly upregulated pre-miRNA in HER2-positive breast cancer patients (fold-change: 4.37), and it could serve as a strong diagnostic factor for the HER2 status in breast cancer patients (p < 0.0001). Moreover, mir-4728 was positively correlated with tumor recurrence and appeared to be a critical independent risk factor of tumor recurrence in patients with high tumor burden (HR: 7.558, 95% CI:1.842-31.006, p = 0.005). Remarkably, HER2-positive patients with higher mir-4728 expression levels had better drug responses to targeted therapies. Furthermore, estrogen receptor (ESR), the predictive marker for endocrine therapies, was found to be the direct target of miR-4728-3p. Taken together, our results supported the potential role of mir-4728 in the diagnosis of HER2 status and the prognostic assessment of HER2-positive patients in response to targeted therapies.
Collapse
Affiliation(s)
- Tao Rui
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| | - Aizhai Xiang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Tang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Jin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Zhang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| |
Collapse
|
7
|
Gibriel AA, Ismail MF, Sleem H, Zayed N, Yosry A, El-Nahaas SM, Shehata NI. Diagnosis and staging of HCV associated fibrosis, cirrhosis and hepatocellular carcinoma with target identification for miR-650, 552-3p, 676-3p, 512-5p and 147b. Cancer Biomark 2022; 34:413-430. [DOI: 10.3233/cbm-210456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Chronic HCV infection progresses to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The latter represents the third most common cause for cancer mortality. Currently, there is no reliable non-invasive biomarker for diagnosis of HCV mediated disorders. OBJECTIVE: Profiling expression signature for circulatory miRNAs in the plasma of 167 Egyptian patients (40 healthy, 48 HCV fibrotic, 39 HCV cirrhotic and 40 HCV-HCC cases). METHODS: QRTPCR was used to quantify expression signature for circulatory miRNAs. RESULTS: MiR-676 and miR-650 were powerful in discriminating cirrhotic and late fibrosis from HCC. MiR-650 could distinguish mild (f0-f1) and advanced (f2-f3) fibrosis from HCC cases. MiR-650 and miR-147b could distinguish early fibrosis from healthy controls meanwhile miR-676 and miR-147b could effectively distinguish between mild chronic and (f1-f3) cases from healthy individuals. All studied miRNAs, except miR-512, can differentiate between (f0-f3) cases and healthy controls. Multivariate logistic regression revealed three potential miRNA panels for effective differentiation of HCC, cirrhotic and chronic liver cases. MiR-676-3p and miR-512-5p were significantly correlated in (f1-f3) fibrosis meanwhile miR-676 and miR-512 could differentiate between cirrhosis and (f0-f3) cases. Both miR-650 and miR-512-5p were positively correlated in the cirrhotic group and in (f0-f4) group. Putative targets for investigated miRNAs were also determined. CONCLUSIONS: Investigated miRNAs could assist in staging and diagnosis of HCV associated disorders.
Collapse
Affiliation(s)
- Abdullah Ahmed Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Manal Fouad Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hameis Sleem
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saeed M. El-Nahaas
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
8
|
Zhu QH, Meng Y, Tang YT, Hou CX, Sun NN, Han W, Wang CX, Ye J. Identification of pivotal microRNAs involved in the development and progression of salivary adenoid cystic carcinoma. J Oral Pathol Med 2021; 51:160-171. [PMID: 34797582 DOI: 10.1111/jop.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND miRNAs and mRNAs have been significantly implicated in tumorigenesis and served as promising prognostic biomarkers for human cancer. Hence, this study was aimed to develop the pivotal miRNA biomarkers-based prognostic signature for salivary adenoid cystic carcinoma. METHODS The miRNA and mRNA expression data were integrated from the gene expression omnibus database to study their involvement in salivary adenoid cystic carcinoma development and progression. Gene ontology and kyoto encyclopedia of genes and genomes were conducted to analyze the biological pathways. Reverse transcription-quantitative PCR was used to verify the expression of selected miRNAs in salivary adenoid cystic carcinoma and corresponding normal tissues. RESULTS There were 386 differentially expressed genes: 158 upregulated and 228 downregulated genes and 102 differentially expressed miRNAs: 78 upregulated and 24 downregulated miRNAs in the salivary adenoid cystic carcinoma samples. A miRNA-mRNA network containing 11 miRNAs and 199 genes was subsequently constructed. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis revealed that the genes targeted by the 11 miRNAs were mostly involved in tumor-related pathways and processes, such as miRNAs in cancer, focal adhesion, neurotrophin signaling pathway, and the PI3K-Akt signaling pathway. Among them, 4 miRNAs (miR-375, miR-494, miR-34c-5p, and miR-331-3p) were selected to verify by reverse transcription-quantitative PCR in 36 pairs of collected salivary adenoid cystic carcinoma and adjacent nontumor samples. Overall survival analysis revealed that the higher expression of miR-331-3p was significantly associated with a worst overall survival and multivariate Cox regression analysis suggested that hsa-miR-331-3p could be an independent prognostic factor for salivary adenoid cystic carcinoma. CONCLUSION Our results revealed that 4-miRNAs signature was a powerful prognostic biomarker for salivary adenoid cystic carcinoma, which provide a basis for exploring deeper mechanisms regarding the progression of salivary adenoid cystic carcinoma, and leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Wang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - JinHai Ye
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|