1
|
Végvári A, Nishimura T. Editorial: Mass spectrometry-based proteogenomics - advances in mutant proteomics and clinical oncology. Front Oncol 2024; 14:1383838. [PMID: 38577326 PMCID: PMC10991841 DOI: 10.3389/fonc.2024.1383838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Akos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet (KI), Stockholm, Sweden
| | - Toshihide Nishimura
- Department Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
Zhang W, Li J. EGF Receptor Signaling Modulates YAP Activation and Promotes Experimental Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35895037 PMCID: PMC9344224 DOI: 10.1167/iovs.63.8.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Both epidermal growth factor receptor (EGFR) and the Yes-associated protein (YAP) signaling pathway are implicated in cell proliferation and differentiation. In this study, we explored whether the formation of proliferative vitreoretinopathy (PVR) depends on the interaction of the EGFR receptor and YAP pathway. Methods We studied the effects of EGFR and YAP activation on retinal fibrosis in a PVR mouse model as well as in knockout mice (conditional deletion of EGFR or YAP specifically in RPE cells). Reversal and knockdown experiments were performed to induce a model of ARPE-19 cells treated with TGF-β2 in vitro. The effect of EGFR/YAP signaling blockade on the PVR-induced cell cycle and TGF-β2-induced ARPE-19 cell activation was determined. Results The EGFR inhibitor erlotinib or conditional deletion of EGFR attenuated YAP activation and decreased the expression of YAP and its downstream target Cyr61 and of connective tissue growth factor in vivo and in vitro. EGFR-PI3K-PDK1 signaling induced by PVR promoted YAP activation and cell cycle progression. Furthermore, activated EGFR signaling bypassed RhoA to increase the protein levels of YAP, C-Myc, CyclinD1, and Bcl-xl. Conclusions Our work highlights that EGFR-PI3K-PDK1-dependent YAP activation plays a crucial role in the formation of PVR. Targeting EGFR and the YAP pathway provides promising therapeutic treatments for PVR.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Proteomic Analysis of Lung Cancer Types—A Pilot Study. Cancers (Basel) 2022; 14:cancers14112629. [PMID: 35681609 PMCID: PMC9179298 DOI: 10.3390/cancers14112629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of tumor-related mortality, therefore significant effort is directed towards understanding molecular alterations occurring at the origin of the disease to improve current treatment options. The aim of our pilot-scale study was to carry out a detailed proteomic analysis of formalin-fixed paraffin-embedded tissue sections from patients with small cell or non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Tissue surface digestion was performed on relatively small cancerous and tumor-adjacent normal regions and differentially expressed proteins were identified using label-free quantitative mass spectrometry and subsequent statistical analysis. Principal component analysis clearly distinguished cancerous and cancer adjacent normal samples, while the four lung cancer types investigated had distinct molecular profiles and gene set enrichment analysis revealed specific dysregulated biological processes as well. Furthermore, proteins with altered expression unique to a specific lung cancer type were identified and could be the targets of future studies.
Collapse
|
4
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
5
|
Gong T, Yang L, Shen F, Chen H, Pan Z, Zhang Q, Jiang Y, Zhong F, Yang P, Zhang Y. Computational and Mass Spectrometry-Based Approach Identify Deleterious Non-Synonymous Single Nucleotide Polymorphisms (nsSNPs) in JMJD6. Molecules 2021; 26:molecules26154653. [PMID: 34361805 PMCID: PMC8347302 DOI: 10.3390/molecules26154653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
The jumonji domain-containing protein 6 (JMJD6) gene catalyzes the arginine demethylation and lysine hydroxylation of histone and a growing list of its known substrate molecules, including p53 and U2AF65, suggesting a possible role in mRNA splicing and transcription in cancer progression. Mass spectrometry-based technology offers the opportunity to detect SNP variants accurately and effectively. In our study, we conducted a combined computational and filtration workflow to predict the nonsynonymous single nucleotide polymorphisms (nsSNPs) present in JMJD6, followed by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and validation. The computational approaches SIFT, PolyPhen-2, SNAP, I-Mutant 2.0, PhD-SNP, PANTHER, and SNPS&GO were integrated to screen out the predicted damaging/deleterious nsSNPs. Through the three-dimensional structure of JMJD6, H187R (rs1159480887) was selected as a candidate for validation. The validation experiments showed that the mutation of this nsSNP in JMJD6 obviously affected mRNA splicing or the transcription of downstream genes through the reduced lysyl-hydroxylase activity of its substrates, U2AF65 and p53, further indicating the accuracy of this prediction method. This research provides an effective computational workflow for researchers with an opportunity to select prominent deleterious nsSNPs and, thus, remains promising for examining the dysfunction of proteins.
Collapse
Affiliation(s)
- Tianqi Gong
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
| | - Lujie Yang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
| | - Fenglin Shen
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
| | - Hao Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
| | - Ziyue Pan
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
| | - Quanqing Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Yan Jiang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
| | - Fan Zhong
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
- Correspondence: (F.Z.); (P.Y.); (Y.Z.)
| | - Pengyuan Yang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
- Correspondence: (F.Z.); (P.Y.); (Y.Z.)
| | - Yang Zhang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (T.G.); (L.Y.); (F.S.); (Z.P.); (Y.J.)
- Correspondence: (F.Z.); (P.Y.); (Y.Z.)
| |
Collapse
|
6
|
Yamada K, Nishimura T, Wakiya M, Satoh E, Fukuda T, Amaya K, Bando Y, Hirano H, Ishikawa T. Protein co-expression networks identified from HOT lesions of ER+HER2-Ki-67high luminal breast carcinomas. Sci Rep 2021; 11:1705. [PMID: 33462336 PMCID: PMC7814020 DOI: 10.1038/s41598-021-81509-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 01/20/2023] Open
Abstract
Patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative/Ki-67-high (ER+HER2-Ki-67high) luminal breast cancer have a worse prognosis and do not respond to hormonal treatment and chemotherapy. This study sought to identify disease-related protein networks significantly associated with this subtype, by assessing in-depth proteomes of 10 lesions of high and low Ki-67 values (HOT, five; COLD, five) microdissected from the five tumors. Weighted correlation network analysis screened by over-representative analysis identified the five modules significantly associated with the HOT lesions. Pathway enrichment analysis, together with causal network analysis, revealed pathways of ribosome-associated quality controls, heat shock response by oxidative stress and hypoxia, angiogenesis, and oxidative phosphorylation. A semi-quantitative correlation of key-protein expressions, protein co-regulation analysis, and multivariate correlation analysis suggested co-regulations via network-network interaction among the four HOT-characteristic modules. Predicted highly activated master and upstream regulators were most characteristic to ER-positive breast cancer and associated with oncogenic transformation, as well as resistance to chemotherapy and endocrine therapy. Interestingly, inhibited intervention causal networks of numerous chemical inhibitors were predicted within the top 10 lists for the WM2 and WM5 modules, suggesting involvement of potential therapeutic targets in those data-driven networks. Our findings may help develop therapeutic strategies to benefit patients.
Collapse
Affiliation(s)
- Kimito Yamada
- Department of Breast Surgery, Tokyo Medical University Hachioji Medical Centre, Tokyo, 193-0998, Japan
- Department of Breast Surgery, Tokyo Medical University Hospital, Tokyo, 160-0023, Japan
| | - Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kanagawa, 216-8511, Japan.
| | - Midori Wakiya
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Centre, Tokyo, 193-0998, Japan
| | - Eiichi Satoh
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Tetsuya Fukuda
- Research and Development, Biosys Technologies Inc, Tokyo, 152-0031, Japan
| | - Keigo Amaya
- Department of Breast Surgery, Tokyo Medical University Hachioji Medical Centre, Tokyo, 193-0998, Japan
| | - Yasuhiko Bando
- Research and Development, Biosys Technologies Inc, Tokyo, 152-0031, Japan
| | - Hiroshi Hirano
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Centre, Tokyo, 193-0998, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery, Tokyo Medical University Hospital, Tokyo, 160-0023, Japan
| |
Collapse
|