1
|
Wu P, Shi J, Wang Z, Sun W, Zhang H. Evaluate the immune-related eRNA models and signature score to predict the response to immunotherapy in thyroid carcinoma. Cancer Cell Int 2022; 22:307. [PMID: 36217201 PMCID: PMC9549686 DOI: 10.1186/s12935-022-02722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The functional alterations of eRNAs have been reported to be correlated with tumorigenesis. However, the roles of eRNAs in thyroid cancer (THCA) remain still unclear. This study aimed to construct an immune-related eRNA prognostic signature that could effectively predict the survival and prognosis for THCA. METHODS The Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify THCA-specific immune-related hub genes and immune-related eRNAs were obtained using Pearson correlation analysis. Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression were conducted to construct an immune-related eRNA prognostic signature in training cohort, and the predictive capability was verified in test cohort and entire cohort. Kaplan-Meier analysis, principal component analysis (PCA), receiver operating characteristic (ROC) curves, and nomogram were used to validate the risk signature. Furthermore, CIBERSORT, ESTIMATE and ssGSEA were analyzed to explore the tumor immune microenvironment (TIME) of the risk signature, and the response of potential immunotherapeutic were also discussed. RESULTS A total of 125 immune-related eRNAs were obtained and 16 immune-related eRNAs were significantly correlated with overall survival (OS). A 9-immune-related eRNA prognostic signature was constructed, and the risk score was identified as an independent predictor. High-risk groups were associated with a poorer OS. Immune microenvironment analysis indicated that low risk score was correlated with higher immuneScore, high immune cell infiltration, and the better response of immunotherapy. Additionally, we also detected 9 immune-related eRNA expression levels in sixty-two matched tumorous and non-tumorous tissues using qRT-PCR analysis. CONCLUSION Our immune-related eRNA risk signature that was an independent prognostic factor was strongly correlated with the immune microenvironment and may be promising for the clinical prediction of prognosis and immunotherapeutic responses in THCA patients.
Collapse
Affiliation(s)
- Pu Wu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinyuan Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhiyuan Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
The Prediction of a 3-Protein-Based Model on the Prognosis of Head and Neck Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2161122. [PMID: 35756403 PMCID: PMC9232309 DOI: 10.1155/2022/2161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the commonest malignant tumors. Using high-throughput genomic methods, RNA-based diagnostic and prognostic models for HNSCC with potential clinical value have been developed. However, the clinical utility and reproducibility of these models are uncertain. Because the complex regulatory processes occurring after mRNA is transcribed, the abundance of proteins in a cell can never be fully predicted or explained by their corresponding mRNA expression. We aimed to assume and verify a novel protein signature for checking the HNSCC patients' prognosis. Methods The functional proteomic data of 332 HNSCC cases were collected from The Cancer Proteome Atlas (TCPA), and the related follow-up and clinical data were acquired from The Cancer Genome Atlas (TCGA). This study adopted multivariate and univariate Cox regression analysis, Akaike Information Criterion, receiver operating characteristic (ROC) analysis, and Kaplan-Meier method. Results Patients' clinical features in both sets were comparable (all, P > 0.05). The area under the ROC curve (AUC) for the 3-protein signature (X4EBP1_pT37T46, HER3_pY1289, and NF2) in the test set was 0.655 and in the combined cohort (all 332 patients combined) was 0.699. In addition, the 3-protein signature exhibited better predictive value for the survival of HNSCC patients as in comparison with conventional clinical factors like age, gender, tumor stage, and smoking history (TNM stage). Conclusion The 3-protein signature developed in this study exhibits good performance in predicting the overall survival of with HNSCC patients. The 3-protein signature exhibited better predictive value for survival than conventional clinical factors just like gender, TNM stage, smoking history, and age.
Collapse
|
3
|
FAM64A promotes HNSCC tumorigenesis by mediating transcriptional autoregulation of FOXM1. Int J Oral Sci 2022; 14:25. [PMID: 35538067 PMCID: PMC9091245 DOI: 10.1038/s41368-022-00174-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) still lacks effective targeted treatment. Therefore, exploring novel and robust molecular targets is critical for improving the clinical outcome of HNSCC. Here, we reported that the expression levels of family with sequence similarity 64, member A (FAM64A) were significantly higher in HNSCC tissues and cell lines. In addition, FAM64A overexpression was found to be strongly associated with an unfavorable prognosis of HNSCC. Both in vitro and in vivo evidence showed that FAM64A depletion suppressed the malignant activities of HNSCC cells, and vice versa. Moreover, we found that the FAM64A level was progressively increased from normal to dysplastic to cancerous tissues in a carcinogenic 4-nitroquinoline-1-oxide mouse model. Mechanistically, a physical interaction was found between FAM64A and forkhead box protein M1 (FOXM1) in HNSCC cells. FAM64A promoted HNSCC tumorigenesis not only by enhancing the transcriptional activity of FOXM1, but also, more importantly, by modulating FOXM1 expression via the autoregulation loop. Furthermore, a positive correlation between FAM64A and FOXM1 was found in multiple independent cohorts. Taken together, our findings reveal a previously unknown mechanism behind the activation of FOXM1 in HNSCC, and FAM64A might be a promising molecular therapeutic target for treating HNSCC.
Collapse
|
4
|
Loick SM, Fröhlich A, Gabrielpillai J, Franzen A, Vogt TJ, Dietrich J, Wiek C, Scheckenbach K, Strieth S, Landsberg J, Dietrich D. DNA Methylation and mRNA Expression of OX40 (TNFRSF4) and GITR (TNFRSF18, AITR) in Head and Neck Squamous Cell Carcinoma Correlates With HPV Status, Mutational Load, an Interferon-γ Signature, Signatures of Immune Infiltrates, and Survival. J Immunother 2022; 45:194-206. [PMID: 34908008 DOI: 10.1097/cji.0000000000000407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022]
Abstract
The tumor necrosis factor receptor superfamily members 4 (TNFRSF4, OX40) and 18 (TNFRSF18, GITR, AITR) are under investigation as targets for immunotherapy of various cancers, including head and neck squamous cell carcinomas. Understanding the regulation of OX40 and GITR, particularly on an epigenetic level, might help to develop companion predictive biomarkers. We conducted broad correlation analyses of DNA methylation of 46 CpG sites within the GITR/OX40 gene locus in head and neck squamous cell carcinomas and normal adjacent tissues provided by The Cancer Genome Atlas (TCGA) Research Network. We analyzed methylation levels with regard to transcriptional gene activity (mRNA expression), human papillomavirus (HPV) infection, differential methylation between tumors and normal adjacent tissues, signatures of immune cell infiltrates, an interferon-γ signature, mutational load, and overall survival. Moreover, we investigated methylation levels in HPV-positive and HPV-negative cell lines and in isolated monocytes, granulocytes, CD8+ and CD4+ T cells, and B cells from peripheral blood from healthy donors. Our results revealed a complex and sequence-contextual methylation pattern in accordance with features of epigenetic regulated genes. We detected significant methylation differences between normal adjacent and tumor tissues, between HPV-positive and HPV-negative tumors, between tumor and immune cells, and significant correlations between methylation and mRNA expression. We further found significant correlations of CpG methylation with overall survival, signatures of immune cell infiltrates, an interferon-γ signature, and mutational load. Our study provides a framework to prospectively test specific CpG sites as biomarkers, in particular in the context of immunotherapies.
Collapse
Affiliation(s)
- Sophia M Loick
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| | - Anne Fröhlich
- Department of Dermatology, University Hospital Bonn, Bonn
| | | | - Alina Franzen
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| | - Timo J Vogt
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| | | | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB)
| |
Collapse
|
5
|
Wondergem NE, Nijenhuis DNLM, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. At the Crossroads of Molecular Biology and Immunology: Molecular Pathways for Immunological Targeting of Head and Neck Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:647980. [PMID: 35047999 PMCID: PMC8757702 DOI: 10.3389/froh.2021.647980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Recent advances in immunotherapy for head and neck squamous cell carcinoma (HNSCC) have led to implementation of anti-programmed death receptor 1 (PD-1) immunotherapy to standard of care for recurrent/metastatic HNSCC. However, the majority of tumors do not respond to these therapies, indicating that these tumors are not immunogenic or other immunosuppressive mechanisms might be at play. Aim: Given their role in carcinogenesis as well as in immune modulation, we discuss the relation between the STAT3, PI3K/AKT/mTOR and Wnt signaling pathways to identify potential targets to empower the immune response against HNSCC. Results: We focused on three pathways. First, STAT3 is often overactivated in HNSCC and induces the secretion of immunosuppressive cytokines, thereby promoting recruitment of immune suppressive regulatory T cells and myeloid-derived suppressor cells to the tumor microenvironment (TME) while hampering the development of dendritic cells. Second, PI3K/AKT/mTOR mutational activation results in increased tumor proliferation but could also be important in HNSCC immune evasion due to the downregulation of components in the antigen-processing machinery. Third, canonical Wnt signaling is overactivated in >20% of HNSCC and could be an interesting pleotropic target since it is related to increased tumor cell proliferation and the development of an immunosuppressive HNSCC TME. Conclusion: The molecular pathology of HNSCC is complex and heterogeneous, varying between sites and disease etiology (i.e., HPV). The in HNSCC widely affected signaling pathways STAT3, PI3K/AKT/mTOR and Wnt are implicated in some of the very mechanisms underlying immune evasion of HNSCC, thereby representing promising targets to possibly facilitate immunotherapy response.
Collapse
Affiliation(s)
- Niels E Wondergem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Dennis N L M Nijenhuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jos B Poell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zhang Y, Chen P, Zhou Q, Wang H, Hua Q, Wang J, Zhong H. A Novel Immune-Related Prognostic Signature in Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:570336. [PMID: 34220923 PMCID: PMC8249947 DOI: 10.3389/fgene.2021.570336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
The immune response within the tumor microenvironment plays a key role in tumorigenesis and determines the clinical outcomes of head and neck squamous cell carcinoma (HNSCC). However, to date, very limited robust and reliable immunological biomarkers have been developed that are capable of estimating prognosis in HNSCC patients. In this study, we aimed to identify the effects of novel immune-related gene signatures (IRGs) that can predict HNSCC prognosis. Based on gene expression profiles and clinical data of HNSCC patient cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, a total of 439 highly variable expressed immune-related genes (including 239 upregulated and 200 downregulated genes) were identified by using differential gene expression analysis. Pathway enrichment analysis indicated that these immune-related differentially expressed genes were enriched in inflammatory functions. After process screening in the training TCGA cohort, six immune-related genes (PLAU, STC2, TNFRSF4, PDGFA, DKK1, and CHGB) were significantly associated with overall survival (OS) based on the LASSO Cox regression model. Integrating these genes with clinicopathological features, a multivariable model was built and suggested better performance in determining patients’ OS in the testing cohort, and the independent validation cohort. In conclusion, a well-established model encompassing both immune-related gene signatures and clinicopathological factors would serve as a promising tool for the prognostic prediction of HNSCC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliang Zhong
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Feng B, Hess J. Immune-Related Mutational Landscape and Gene Signatures: Prognostic Value and Therapeutic Impact for Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13051162. [PMID: 33800421 PMCID: PMC7962834 DOI: 10.3390/cancers13051162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immunotherapy has emerged as a standard-of-care for most human malignancies, including head and neck cancer, but only a limited number of patients exhibit a durable clinical benefit. An urgent medical need is the establishment of accurate response predictors, which is handicapped by the growing body of molecular, cellular and clinical variables that modify the complex nature of an effective anti-tumor immune response. This review summarizes more recent efforts to elucidate immune-related mutational landscapes and gene expression signatures by integrative analysis of multi-omics data, and highlights their potential therapeutic impact for head and neck cancer. A better knowledge of the underlying principles and relevant interactions could pave the way for rational therapeutic combinations to improve the efficacy of immunotherapy, in particular for those cancer patients at a higher risk for treatment failure. Abstract Immunotherapy by immune checkpoint inhibition has become a main pillar in the armamentarium to treat head and neck cancer and is based on the premise that the host immune system can be reactivated to successfully eliminate cancer cells. However, the response rate remains low and only a small subset of head and neck cancer patients achieves a durable clinical benefit. The availability of multi-omics data and emerging computational technologies facilitate not only a deeper understanding of the cellular composition in the tumor immune microenvironment but also enables the study of molecular principles in the complex regulation of immune surveillance versus tolerance. These knowledges will pave the way to apply immunotherapy more precisely and effectively. This review aims to provide a holistic view on how the immune landscape dictates the tumor fate and vice versa, and how integrative analysis of multi-omics data contribute to our current knowledge on the accuracy of predictive biomarkers and on a broad range of factors influencing the response to immunotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Bohai Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Department of Otorhinolaryngology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|