1
|
Haryana SM, Ardiansyah SA, Noficandra H, Wardana T, Sesotyosari SL, Afira FR, Satriyo PB, Setiasari DW, Heriyanto DS. G2/M Checkpoint Modulation: Insights from miRNA Profiles in FAM and Breast Cancer. Asian Pac J Cancer Prev 2024; 25:2661-2668. [PMID: 39205563 PMCID: PMC11495450 DOI: 10.31557/apjcp.2024.25.8.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The aim of this research is to understand the role of microRNA in cell cycle regulation especially on G2M Checkpoint from Luminal A samples Indonesian population. The profile results are used as biomarkers and therapeutic targets for breast cancer. For this reason, analysis was carried out on the comparison of miRNA expression between Luminal A and Fibroadenoma mamae (FAM) using Nanostring nCounter. METHODS In this study, 5 (Formalin-Fixed Paraffin-Embedded) FFPE Luminal A tissues and 4 FFPE FAM samples were used. RNA was isolated from cancer tissue samples. Differential expression analysis of miRNA was conducted using Nanostring nCounter technology, subsequently followed by the expression analysis between FAM and Luminal A using nSolver softwere. Elevated expression levels of miRNAs were subjected to pathway and gene regulation analysis using KEGG and GSEA MsigDB databases. Data visualization was performed utilizing Cytoscape, NetworkAnalyst, and SRplot tools. RESULT Based on 792 miRNAs detected on Nanostring nCounter, it was found that 60 miRNAs were upregulated and 6 miRNAs were downregulated. The 15 upregulated miRNAs analyzed show their role in the G2M Checkpoint through several pathways. The five miRNAs that significantly regulate the G2M Checkpoint are hsa-miR-196b-5p, hsa-miR-218-5p, hsa-miR-7-5p, hsa-miR-19a-5p, and hsa-miR-18a-5p Where each of these miRNAs regulates the CDKN1B gene. CONCLUSION Significant differences in the expression of multiple miRNAs between Luminal A and FAM samples were observed. Furthermore, several of these miRNAs were found to modulate the G2M Checkpoint in Luminal A cancer by suppressing tumor suppressor genes.
Collapse
Affiliation(s)
- Sofia Mubarika Haryana
- Study Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Syamsul Arif Ardiansyah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Habibullah Noficandra
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Tirta Wardana
- Department Biomedicine, School of Dentistry, Faculty of Medicine Jenderal Soedirman University, Jawa Tengah, Indonesia.
| | | | - Fathiya Rahma Afira
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Pamungkas Bagus Satriyo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dicka Wahyu Setiasari
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Didik Setyo Heriyanto
- Study Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Du R, Zhou Z, Huang Y, Li K, Guo K, Han L, Bian H. Chaperonin-containing TCP-1 subunit genes are potential prognostic biomarkers and are correlated with Th2 cell infiltration in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e38387. [PMID: 39259093 PMCID: PMC11142841 DOI: 10.1097/md.0000000000038387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 09/12/2024] Open
Abstract
A family of molecular chaperone complexes called chaperonin-containing T-complex protein 1 (TCP-1) subunit genes (CCTs) aids in the folding of numerous proteins. With regard to lung adenocarcinoma (LUAD), this study provided a thorough understanding of the diagnostic and prognostic use of CCTs. The expression of CCTs in LUAD was evaluated by using databases including UALCAN and the Gene Expression Omnibus. Immunohistochemistry (IHC) was conducted to validate the expression of CCTs in LUAD. The mutation in the CCTs was identified through the cBioPortal database, while promoter methylation was measured by the UALCAN database. The prognostic value of CCTs was evaluated using the PrognoScan analysis. The GEPIA2.0 database was used to measure the prognostic value of CCTs and associated Hub genes. Correlation analysis between CCTs expression in LUAD was based on the GEPIA2.0 database. The ROC curves, clinical correlation analysis, gene ontology, Kyoto Encyclopedia of Genes and Genome analysis, and immune cell infiltration analysis were downloaded from The Cancer Genome Atlas database and then analyzed and visualized using the R language. The STRING database was used for protein-protein interaction analysis. Upregulation of CCTs expression in patients with LUAD indicated advanced diseases and a poor prognosis. ROC curve analysis revealed that the CCTs may serve as diagnostic indicators. The functional enrichment analysis showed that CCTs were involved in the mitosis-mediated cell cycle process. Additionally, 10 hub genes associated with CCTs that were linked to LUAD prognosis and tumor progression were identified. Immune cell infiltration analysis showed that CCTs expression in tumor tissues tends to be related to T helper type 2 cell infiltration. This study revealed that CCTs may serve as valuable biomarkers for the diagnosis and targeted therapy of LUAD.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| |
Collapse
|
3
|
Hallal SM, Tűzesi Á, Sida LA, Xian E, Madani D, Muralidharan K, Shivalingam B, Buckland ME, Satgunaseelan L, Alexander KL. Glioblastoma biomarkers in urinary extracellular vesicles reveal the potential for a 'liquid gold' biopsy. Br J Cancer 2024; 130:836-851. [PMID: 38212481 PMCID: PMC10912426 DOI: 10.1038/s41416-023-02548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Biomarkers that reflect glioblastoma tumour activity and treatment response are urgently needed to help guide clinical management, particularly for recurrent disease. As the urinary system is a major clearance route of circulating extracellular vesicles (EVs; 30-1000 nm nanoparticles) we explored whether sampling urinary-EVs could serve as a simple and non-invasive liquid biopsy approach for measuring glioblastoma-associated biomarkers. METHODS Fifty urine specimens (15-60 ml) were collected from 24 catheterised glioblastoma patients immediately prior to primary (n = 17) and recurrence (n = 7) surgeries, following gross total resection (n = 9), and from age/gender-matched healthy participants (n = 14). EVs isolated by differential ultracentrifugation were characterised and extracted proteomes were analysed by high-resolution data-independent acquisition liquid chromatography tandem mass spectrometry (DIA-LC-MS/MS). RESULTS Overall, 6857 proteins were confidently identified in urinary-EVs (q-value ≤ 0.01), including 94 EV marker proteins. Glioblastoma-specific proteomic signatures were determined, and putative urinary-EV biomarkers corresponding to tumour burden and recurrence were identified (FC ≥ | 2 | , adjust p-val≤0.05, AUC > 0.9). CONCLUSION In-depth DIA-LC-MS/MS characterisation of urinary-EVs substantiates urine as a viable source of glioblastoma biomarkers. The promising 'liquid gold' biomarker panels described here warrant further investigation.
Collapse
Affiliation(s)
- Susannah M Hallal
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Liam A Sida
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elissa Xian
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Daniel Madani
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Krishna Muralidharan
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Brindha Shivalingam
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Laveniya Satgunaseelan
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Exploring Prognostic Gene Factors in Breast Cancer via Machine Learning. Biochem Genet 2024:10.1007/s10528-024-10712-w. [PMID: 38383836 DOI: 10.1007/s10528-024-10712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer remains the most prevalent cancer in women. To date, its underlying molecular mechanisms have not been fully uncovered. The determination of gene factors is important to improve our understanding on breast cancer, which can correlate the specific gene expression and tumor staging. However, the knowledge in this regard is still far from complete. Thus, this study aimed to explore these knowledge gaps by analyzing existing gene expression profile data from 3149 breast cancer samples, where each sample was represented by the expression of 19,644 genes and classified into Nottingham histological grade (NHG) classes (Grade 1, 2, and 3). To this end, a machine learning-based framework was designed. First, the profile data were analyzed by using seven feature ranking algorithms to evaluate the importance of features (genes). Seven feature lists were generated, each of which sorted features in accordance with feature importance evaluated from a special aspect. Then, the incremental feature selection method was applied to each list to determine essential features for classification and building efficient classifiers. Consequently, overlapping genes, such as AURKA, CBX2, and MYBL2, were deemed as potentially related to breast cancer malignancy and prognosis, indicating that such genes were identified to be important by multiple feature ranking algorithms. In addition, the study formulated classification rules to reflect special gene expression patterns for three NHG classes. Some genes and rules were analyzed and supported by recent literature, providing new references for studying breast cancer.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
6
|
Hakami MA, Hazazi A, Abdulaziz O, Almasoudi HH, Alhazmi AYM, Alkhalil SS, Alharthi NS, Alhuthali HM, Almalki WH, Gupta G, Khan FR. HOTAIR: A key regulator of the Wnt/β-catenin signaling cascade in cancer progression and treatment. Pathol Res Pract 2024; 253:154957. [PMID: 38000201 DOI: 10.1016/j.prp.2023.154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The long non-coding RNA (lncRNA) HOTAIR occupies a central position in the complex domain of cancer biology, particularly concerning its intricate interplay with the Wnt/β-catenin signaling pathway. This comprehensive review explores the multifaceted interactions between HOTAIR and the Wnt/β-catenin cascade, elucidating their profound function in cancer growth, progression, and therapeutic strategies. The study commences by underscoring the pivotal role of the Wnt/β-catenin cascade in governing essential cellular activities, emphasizing its dysregulation as a linchpin in cancer initiation and advancement. It introduces HOTAIR as a crucial regulatory entity, influencing gene expression in both healthy and diseased. The core of this review plunges into the intricacies of HOTAIR's engagement with Wnt/β-catenin signaling. It unravels how HOTAIR, through epigenetic modifications and transcriptional control, exerts its influence over key pathway constituents, including β-catenin, Wnt ligands, and target genes. This influence drives unchecked cancer cell growth, invasion, and metastasis. Furthermore, the review underscores the clinical significance of the HOTAIR-Wnt/β-catenin interplay, elucidating its associations with diverse cancer subtypes, patient prognoses, and prospects as a therapy. It provides insights into ongoing research endeavors to develop HOTAIR-targeted treatments and initiatives to facilitate aberrant Wnt/β-catenin activation. Concluding on a forward-looking note, the article accentuates the broader implications of HOTAIR's involvement in cancer biology, including its contributions to therapy resistance and metastatic dissemination. It underscores the importance of delving deeper into these intricate molecular relationships to pave the way for groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences. College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | - Hayaa M Alhuthali
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Sahin Y, Altan Z, Karabulut A, Saadat KASM, Arslan A. The role of miR-223 in breast cancer; an integrated analysis. Mol Biol Rep 2023; 50:10179-10188. [PMID: 37924447 DOI: 10.1007/s11033-023-08850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Breast cancer (BRCA) is the most common and leading cause of cancer-related death in women. MicroRNAs (miRNAs) are short non-coding RNA fragments that play a role in regulating gene expression including the cancer-related pathways. Although dysregulation of miR-223 has been demonstrated in recent studies to have prognostic value in various cancers, its diagnostic and prognostic role in BRCA remains unknown. METHODS The expression and the prognostic value of miR-223 were evaluated using the TCGA data and verified by qRT-PCR. Subsequently, potential oncogenic targets of miR-223 were identified by using three different miRNA target prediction tools and the GEPIA database. In addition to these databases, protein-protein interaction network, molecular functions, prognostic value, and the expression level of miR-223 targets were included by using several other bioinformatics tools and databases; such as, UALCAN, GeneMANIA and Metascape. RESULTS The bioinformatic results demonstrated that miR-223 downregulated in BRCA and associated with poor prognosis of patients. In vitro experiments validated that miR-223 significantly downregulated in BRCA cells, MCF-7, SK-BR3, MDA-MB-231 and HCC1500, compared to normal breast cell line hTERT-HME1. Furthermore, ANLN, DYNLT1, LRRC59, SLC12A8 and TPM3 genes were identified as the potential oncogenic target genes of miR-223 based on their expression and prognosis in BRCA. Additionally, protein-protein interaction network of these target genes was mainly enriched in dynein intermediate chain binding, cell division, regulation of cell cycle process, and positive regulation of cellular component biogenesis. CONCLUSIONS The results suggests that miR-223 and its targets, ANLN, DYNLT1, LRRC59, SLC12A8 and TPM3, might be reliable potential prognostic biomarkers in BRCA patients.
Collapse
Affiliation(s)
- Yunus Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Zekiye Altan
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Aydın Karabulut
- Department of Immunology, Institute of Health Sciences, Health Sciences University, Mekteb-i Tıbbiye-i Sahane (Hamidiye) Kulliyesi, Uskudar, İstanbul, Turkey
| | - Khandakar A S M Saadat
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Arslan
- Department of Medical Genetics, Faculty of Medicine, Research and Application Hospital, Tekirdag Namık Kemal University, Suleymanpasa, Tekirdag, Turkey.
| |
Collapse
|
8
|
Doloi R, Gupta SM. MicroRNAs: The key players regulating the crosstalk between Hippo and Wnt/β-catenin pathways in breast cancer. Life Sci 2023; 329:121980. [PMID: 37516428 DOI: 10.1016/j.lfs.2023.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Breast Cancer has the highest burden in females worldwide and is predicted to increase by many folds with increasing lifestyle related risk factors, genetic mutations, and an aging population. The Hippo signalling and Wnt signalling pathways were identified as important signal transducers involved in maintaining organ development, tissue homeostasis, cell proliferation and apoptosis. microRNAs are short nucleotide sequences which act as regulatory components driving signal transductions in most cancers and can serve as both diagnostic and prognostic markers. Several reports have implicated that deregulated Hippo as well as Wnt signalling mediated by miRNAs together drive tumorigenesis, metastases and chemoresistance in breast cancer. Recent evidences on a crosstalk between Hippo and Wnt components elucidated how these pathways might be synchronized to have overlapping functions to promote tumorigenesis. Since miRNAs are demonstrated to target most of the components in both the pathways, in this review, we talk about the crosstalk between Hippo and Wnt signalling pathways and the potential microRNAs that might regulate the interplay between the two pathways in breast cancer, which has not been explored earlier.
Collapse
Affiliation(s)
- Rinki Doloi
- Indian Council of Medical Research - National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Sadhana M Gupta
- Indian Council of Medical Research - National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India.
| |
Collapse
|
9
|
Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, Jin H, Tuo B. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023; 63:106. [PMID: 37539774 PMCID: PMC10552740 DOI: 10.3892/ijo.2023.5554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP‑1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer‑related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Nannan Qin
- Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| |
Collapse
|
10
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Ma J, Song P, Liu X, Ma C, Zheng M, Ren X, Wang R, Liu W, Lu Z, Li J. Insights into the roles and driving forces of CCT3 in human tumors. Front Pharmacol 2022; 13:1005855. [PMID: 36313331 PMCID: PMC9596777 DOI: 10.3389/fphar.2022.1005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
CCT3 played a key role in many cancers. This study aimed to further explore the characteristics of CCT3 from a pan-cancer perspective and reveal the driving forces for CCT3. By bioinformatic analysis, we found that the mRNA and protein levels of CCT3 were abnormally elevated in most tumor types and were correlated with poor prognosis. Single-cell sequencing data indicated an abnormal increase of CCT3 expression in both malignant cells and multiple immune cells. In the tumor microenvironment, CCT3 expression was negatively relevant with immune cell infiltration and immune checkpoint genes expression. In colon cancer, knockdown of CCT3 inhibited cell proliferation. Gene set enrichment analysis showed that CCT3 may be oncogenic by regulating amino acid metabolism. Furthermore, we predicted sensitive drugs for CCT3 by virtual screening and sensitivity analysis. Many driver genes such as TP53 and KRAS were essential for CCT3 overexpression. Epigenetic factors, enhancers in particular, were also critical for CCT3 expression. Additionally, we constructed the lncRNA/circRNA-miRNA-CCT3 regulatory network. Collectively, CCT3 had the potential to be a diagnostic and prognostic biomarker for multiple tumor types. CCT3 expression was relevant with an immunosuppressive tumor microenvironment. CCT3 could be a new molecular target for colon cancer. Both genetic and epigenetic factors were responsible for CCT3 expression in tumors.
Collapse
Affiliation(s)
- Jingang Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgeng Ma
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Mingzhu Zheng
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Ren
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui Wang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wenshan Liu
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| |
Collapse
|
12
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
13
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
14
|
Yang Y, Wang D, Tao K, Wang G. Circular RNA circLRCH3 Inhibits Proliferation, Migration, and Invasion of Colorectal Cancer Cells Through miRNA-223/LPP Axis. Onco Targets Ther 2022; 15:541-554. [PMID: 35611368 PMCID: PMC9124491 DOI: 10.2147/ott.s366605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the most common carcinomas worldwide with a high mortality rate. Numerous studies suggest that circular RNA (circRNA) plays a crucial role in the progression of various carcinomas, including CRC. The present work focused on exploring the role and underlying molecular mechanism of action of the circRNA circLRCH3 in CRC. Methods Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted to detect expression levels of circLRCH3, miR-233, and lipoma preferred partner (LPP). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the proliferation of CRC cells and the transwell assay was used to evaluate cell migration and invasion capacity. A flow cytometry assay was used to analyze the effect of circLRCH3 on the distribution of the cell cycle and apoptosis of CRC cells. The expression of LPP was analyzed using Western blotting or an RT-qPCR assay. The relationship between miR-223 and circLRCH3, and that between miR-223 and LPP, was predicted and examined using bioinformatics analysis and luciferase reporter gene experiments. A xenograft tumor formation assay was also performed. Results We found that the expression level of circLRCH3 was downregulated in CRC cells and negatively correlated with miR-223. The overexpression of circLRCH3 or silencing of miR-223 inhibited the growth, invasion, and migration of CRC cells, but promoted their apoptosis. In contrast, overexpression of miR-223 and depletion of LPP severally abrogated the tumor suppressive roles of circLRCH3 and miR-223 knockdown in CRC cells in vitro. The xenograft experiments in nude mice also proved the antitumor effect of circLRCH3. Conclusion These results suggested that the circLRCH3/miR-223/LPP axis likely plays a critical role in CRC.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
- Correspondence: Guobin Wang, Email
| |
Collapse
|
15
|
Shi H, Zhang Y, Wang Y, Fang P, Liu Y, Li W. Restraint of chaperonin containing T-complex protein-1 subunit 3 has antitumor roles in non-small cell lung cancer via affection of YAP1. Toxicol Appl Pharmacol 2022; 439:115926. [PMID: 35182550 DOI: 10.1016/j.taap.2022.115926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
The implication of chaperonin containing T-complex protein-1 subunit 3 (CCT3) in carcinogenesis has been observed in a diverse malignancies. However, the relevance of CCT3 in non-small cell lung cancer (NSCLC) has not been well addressed. This research is dedicated to investigating the expression pattern and functional role of CCT3 in NSCLC. An elevation in CCT3 levels was observed in NSCLC tissue, which was linked to a reduced overall survival rate. The inhibition of CCT3 by shRNA-mediated gene silencing induced suppressive effects on the transformative phenotypes of NSCLC cells, including the inhibition of cell proliferation and invasion, and the induction of cell cycle arrest and apoptosis. Further investigation revealed that the silencing of CCT3 led to the suppression of Yes-associated protein 1 (YAP1), and decreased the expression of YAP1 target genes in NSCLC cells. The activation of YAP1 via forced expression of constitutively active YAP1 mutant reversed CCT3-restraint-evoked antitumor effects in NSCLC cells. Crucially, NSCLC cells with CCT3 silencing also exhibited weakened oncogenicity in nude mice associated with the down-regulation of YAP1 activation in xenografts. To sum up, these observations of our work show that the inhibition of CCT3 produces antitumor effects in NSCLC via the suppression of YAP1. This study unveils a possible role CCT3/YAP1 axis in NSCLC and suggests CCT3 as a candidate anticancer target.
Collapse
Affiliation(s)
- Hongyang Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China.
| | - Yonghong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Ping Fang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| |
Collapse
|
16
|
Raut D, Vora A, Bhatt LK. The Wnt/β-catenin pathway in breast cancer therapy: a pre-clinical perspective of its targeting for clinical translation. Expert Rev Anticancer Ther 2021; 22:97-114. [PMID: 34927527 DOI: 10.1080/14737140.2022.2016398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Despite various treatments available, there is still a high mortality rate in breast cancer patients. Thus, there exists an unmet need for new therapeutic interventions. Studies show that the Wnt/β-catenin signaling pathway is involved in breast cancer metastasis because of its transcriptional control on epithelial to mesenchymal transition. AREAS COVERED This comprehensive review explores the Wnt signaling pathway as a potential target for treating breast cancer and other breast cancer subtypes. We discuss the Wnt signaling pathway, its role in breast cancer metastasis, and its effect on breast cancer stem cells. Further, endogenous agents that cause Wnt pathway inactivation are outlined. Finally, various natural and chemical compounds modulating the Wnt pathway used in pre-clinical or clinical trials for breast cancer treatment are discussed. EXPERT OPINION In vitro and in vivo studies indicate an immense potential of agents targeting the Wnt signaling pathway to prevent and manage breast cancer. Still, more clinical studies are required to support their use in humans. Apart from the agents already in clinical trials, several drug combinations discussed may be translated into clinical practice in a few years.
Collapse
Affiliation(s)
- Dezaree Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Amisha Vora
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
17
|
Zhong XL, Qian BP, Huang JC, Zhao SZ, Li Y, Qiu Y. Low expression of TCP1 (T-Complex 1) and PSMC1 (Proteasome 26S subunit, ATPase 1) in heterotopic ossification during ankylosing spondylitis. Bioengineered 2021; 12:7459-7469. [PMID: 34612770 PMCID: PMC8806538 DOI: 10.1080/21655979.2021.1975981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heterotopic ossification (HO) is frequently seen in patients with spinal injuries. Therefore, this study aimed to characterize the association of HO with ankylosing spondylitis (AS) through gene expression profiling. The human transcriptomic datasets (GSE73754 and GSE94683) were obtained from the Gene Expression Omnibus database for analysis. Overlapping differentially expressed genes (DEGs) were identified between AS and HO disease states. Subsequently, weighted gene co-expression network analysis (WGCNA) was performed for constructing and identifying hub genes for each condition. Finally, a consensus of the overlapping DEGs and the hub genes in AS and HO was taken for determining the key genes involved in AS-induced HO. Quantitative real-time polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels in mesenchymal stem cells of AS patients and controls. Additionally, immunohistochemistry was performed on interspinous ligament samples for experimental validation of genes. DEG analysis identified 355 overlapping genes between HO and AS. WGCNA indicated that the salmon module of the 22 modules constructed, was most significantly correlated with AS-induced HO. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the salmon module indicated the presence of genes enriched in proteasome regulatory particle and proteasome pathways. mRNA expression analysis identified TCP1 and PSMC1 as the key genes in AS-induced HO. Further validation of these genes could help elucidate their role in the complex association of AS and HO.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Bang-Ping Qian
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji-Chen Huang
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Shi-Zhou Zhao
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Yao Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y, Yanda L. Chaperonin containing TCP1 subunit 3 (CCT3) promotes cisplatin resistance of lung adenocarcinoma cells through targeting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered 2021; 12:7335-7347. [PMID: 34612768 PMCID: PMC8806702 DOI: 10.1080/21655979.2021.1971030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cisplatin resistance remains a major obstacle to effective chemotherapies for non-small cell lung cancer (NSCLC). Chaperonin containing TCP1 subunit 3 (CCT3) has been extensively investigated in various cancers, but not in the context of drug resistance. In the present study, we aimed to investigate the role of CCT3 in cisplatin resistance of lung adenocarcinoma (LUAD) cells. By surveying the Gene Expression Profiling Interactive Analysis (GEPIA) website, we found CCT3 expression to be up-regulated in NSCLCs, which correlated with the poor prognosis of LUAD patients. Furthermore, both mRNA and protein levels of CCT3 were upregulated in the cisplatin-resistant A549/DDP cells compared to the cisplatin-sensitive A549 cells. Importantly, upon cisplatin treatment, short hairpin RNA (shRNA)-mediated CCT3 knockdown significantly inhibited the proliferation, invasion and migration of A549/DDP cells, and induced significant G2/M cell cycle arrest and apoptosis in A549/DDP cells. Moreover, CCT3 knockdown significantly weakened the tumorigenicity of the cisplatin-treated A549/DDP cells in vitro and in vivo. Finally, CCT3 knockdown re-sensitized A549/DDP cells to cisplatin through inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. In conclusion, our results demonstrated that CCT3 could promote cisplatin resistance of LUAD cells via activating the JAK2/STAT3 pathway, indicating that CCT3 may be a novel molecular target for overcoming cisplatin resistance in LUAD patients.
Collapse
Affiliation(s)
- Xu Danni
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Zeng Jiangzheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Sun Huamao
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Pan Yinglian
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Yang Changcheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Lu Yanda
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
19
|
Hu Y, Fu P, Zhao H, Zhang F, Jiang X, Zhao W, Lv P. Chaperonin-containing tailless complex polypeptide 1 subunit 6A correlates with increased World Health Organization grade, less isocitrate dehydrogenase mutation, and deteriorative survival of astrocytoma patients. J Clin Lab Anal 2021; 35:e23917. [PMID: 34312925 PMCID: PMC8418478 DOI: 10.1002/jcla.23917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Chaperonin‐containing tailless complex polypeptide 1 subunit 6A (CCT6A) is reported to be an efficient prognostic biomarker in various cancers, but it is rarely reported in astrocytoma. Thus, this study aimed to evaluate the expression of CCT6A and its correlation with disease features and prognosis in astrocytoma patients. Methods Totally, 198 astrocytoma patients who received surgery treatment were enrolled. CCT6A protein expression was determined in the tumor tissues fixed in formalin and embedded in paraffin (FFEP) by immunohistochemistry (IHC) assay. In addition, 133 out of 198 astrocytoma patients had fresh tumor tissues frozen in the liquid nitrogen for the determination of CCT6A mRNA expression by reverse transcription‐quantitative polymerase chain reaction. Results Sixty‐nine (34.8%), 70 (35.4%), 46 (23.2%), and 13 (6.6%) astrocytoma patients had the CCT6A immunohistochemistry (IHC) score of 0–3, 4–6, 7–9, and 10–12, respectively. CCT6A protein expression was correlated with increased World Health Organization (WHO) grade (P < 0.001) and less isocitrate dehydrogenase (IDH) mutation (P = 0.002); meanwhile, CCT6A mRNA expression was only related to elevated WHO grade (P = 0.001). However, CCT6A protein and mRNA expression were not correlated with other clinical features and subsequent treatment modalities (all P > 0.05). Moreover, CCT6A protein high and CCT6A mRNA high were related to shorter accumulating overall survival (OS; both P < 0.05). CCT6A protein high was an independent factor for predicting the worse OS (hazard ratio: 1.821, P = 0.012). Conclusion Chaperonin‐containing tailless complex polypeptide 1 subunit 6A correlates with elevated WHO grade and less IDH mutation; besides, CCT6A high expression is independently associated with unfavorable accumulating OS of astrocytoma patients.
Collapse
Affiliation(s)
- Yueyun Hu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wohua Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| |
Collapse
|
20
|
Lucia RM, Huang WL, Alvarez A, Masunaka I, Ziogas A, Goodman D, Odegaard AO, Norden-Krichmar TM, Park HL. Association of mammographic density with blood DNA methylation. Epigenetics 2021; 17:531-546. [PMID: 34116608 PMCID: PMC9067527 DOI: 10.1080/15592294.2021.1928994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Altered DNA methylation may be an intermediate phenotype between breast cancer risk factors and disease. Mammographic density is a strong risk factor for breast cancer. However, no studies to date have identified an epigenetic signature of mammographic density. We performed an epigenome-wide association study of mammographic density. Methods: White blood cell DNA methylation was measured for 385 postmenopausal women using the Illumina Infinium MethylationEPIC BeadChip array. Differential methylation was assessed using genome-wide, probe-level, and regional analyses. We implemented a resampling-based approach to improve the stability of our findings. Results: On average, women with elevated mammographic density exhibited DNA hypermethylation within CpG islands and gene promoters compared to women with lower mammographic density. We identified 250 CpG sites for which DNA methylation was significantly associated with mammographic density. The top sites were located within genes associated with cancer, including HDLBP, TGFB2, CCT4, and PAX8, and were more likely to be located in regulatory regions of the genome. We also identified differential DNA methylation in 37 regions, including within the promoters of PAX8 and PF4, a gene involved in the regulation of angiogenesis. Overall, our results paint a picture of epigenetic dysregulation associated with mammographic density. Conclusion: Mammographic density is associated with differential DNA methylation throughout the genome, including within genes associated with cancer. Our results suggest the potential involvement of several genes in the biological mechanisms behind differences in breast density between women. Further studies are warranted to explore these potential mechanisms and potential links to breast cancer risk.
Collapse
Affiliation(s)
- Rachel M Lucia
- Department of Epidemiology, University of California, Irvine, USA
| | - Wei-Lin Huang
- Department of Epidemiology, University of California, Irvine, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, USA
| | - Deborah Goodman
- Department of Epidemiology, University of California, Irvine, USA
| | | | | | - Hannah Lui Park
- Department of Epidemiology, University of California, Irvine, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, USA
| |
Collapse
|
21
|
Luparello C. Cadmium-Associated Molecular Signatures in Cancer Cell Models. Cancers (Basel) 2021; 13:2823. [PMID: 34198869 PMCID: PMC8201045 DOI: 10.3390/cancers13112823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023] Open
Abstract
The exposure of cancer cells to cadmium and its compounds is often associated with the development of more malignant phenotypes, thereby contributing to the acceleration of tumor progression. It is known that cadmium is a transcriptional regulator that induces molecular reprogramming, and therefore the study of differentially expressed genes has enabled the identification and classification of molecular signatures inherent in human neoplastic cells upon cadmium exposure as useful biomarkers that are potentially transferable to clinical research. This review recapitulates selected studies that report the detection of cadmium-associated signatures in breast, gastric, colon, liver, lung, and nasopharyngeal tumor cell models, as specifically demonstrated by individual gene or whole genome expression profiling. Where available, the molecular, biochemical, and/or physiological aspects associated with the targeted gene activation or silencing in the discussed cell models are also outlined.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
22
|
Macario AJL, Conway de Macario E. Chaperonins in cancer: Expression, function, and migration in extracellular vesicles. Semin Cancer Biol 2021; 86:26-35. [PMID: 34087417 DOI: 10.1016/j.semcancer.2021.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
The chaperonins CCT and Hsp60 are molecular chaperones, members of the chaperone system (CS). Chaperones are cytoprotective but if abnormal in quantity or quality they may cause diseases, the chaperonopathies. Here, recent advances in the understanding of CCT and Hsp60 in cancerology are briefly discussed, focusing on breast and brain cancers. CCT subunits, particularly CCT2, were increased in breast cancer cells and this correlated with tumor progression. Experimental induction of CCT2 increase was accompanied by an increase of CCT3, 4, and 5, providing another evidence for the interconnection between the members of the CS and the difficulties expected while manipulating one member with therapeutic purposes. Another in silico study demonstrated a direct correlation between the increase in the tumor tissue of the mRNA levels of all CCT subunits, except CCTB6, with bad prognosis. Studies with glioblastomas demonstrated an increase in the CCT subunits in the tumor tissue and in extracellular vesicles (EVs) derived from them. Expression levels of CCT1, 2, 6A, and 7 were the most increased and markers of bad prognosis, particularly CCT6A. A method for measuring Hsp60 and related miRNA in exosomes from blood of patients with glioblastomas or other brain tumors was discussed, and the results indicate that the triad Hsp60-related miRNAs-exosomes has potential regarding diagnosis and patient monitoring. All these data provide a strong foundation for future studies on the role played by chaperonins in carcinogenesis and for fully developing their theranostics applications along with exosomes.
Collapse
Affiliation(s)
- Alberto J L Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| |
Collapse
|
23
|
Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1659. [PMID: 33951281 PMCID: PMC8518860 DOI: 10.1002/wrna.1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Given their intrinsic pleiotropism, microRNAs (miR) play complex biological roles, in both normal and pathological conditions. Often the same miR can act as oncogene or oncosuppressor, depending on the biological process dysregulated in each specific tissue. miR‐223 does not represent an exception to this rule and its functions greatly differ in different contexts. miR‐223 has been widely studied in the hematopoietic compartment, where it plays a central role in innate immune response, regulating myeloid differentiation and granulocytes function. Accordingly, dysregulated expression of miR‐223 has been associated to different inflammatory disorders and tumors arising from the immune compartment. Most carcinomas, breast cancer being the most studied, display loss of miR‐223. However, in gastro‐esophageal cancers miR‐223 is frequently overexpressed and correlates with worse prognosis. A link between miR‐223 and response to CDK4/6‐inhibitors has been recently proposed, suggesting a role as biomarker of therapeutic response. The notion that one of the most commonly mutated protein in cancer, mutant p53, binds the promoter of miR‐223 and suppresses its transcription, adds a further level of complexity to the full understanding of miR‐223 in cancer. In this review, we will summarize the current knowledge on the molecular networks that alter or are altered by miR‐223, in different cancer types. We will discuss if the times are ready for the exploitation of miR‐223 as predictive biomarker of treatment response or, even, as therapeutic target, in specific settings. Finally, we will suggest which could be the next steps to be taken for a realistic clinical application of miR‐223. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
24
|
Ghozlan H, Showalter A, Lee E, Zhu X, Khaled AR. Chaperonin-Containing TCP1 Complex (CCT) Promotes Breast Cancer Growth Through Correlations With Key Cell Cycle Regulators. Front Oncol 2021; 11:663877. [PMID: 33996588 PMCID: PMC8121004 DOI: 10.3389/fonc.2021.663877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled proliferation as a result of dysregulated cell cycling is one of the hallmarks of cancer. Therapeutically targeting pathways that control the cell cycle would improve patient outcomes. However, the development of drug resistance and a limited number of inhibitors that target multiple cell cycle modulators are challenges that impede stopping the deregulated growth that leads to malignancy. To advance the discovery of new druggable targets for cell cycle inhibition, we investigated the role of Chaperonin-Containing TCP1 (CCT or TRiC) in breast cancer cells. CCT, a type II chaperonin, is a multi-subunit protein-folding complex that interacts with many oncoproteins and mutant tumor suppressors. CCT subunits are highly expressed in a number of cancers, including breast cancer. We found that expression of one of the CCT subunits, CCT2, inversely correlates with breast cancer patient survival and is subject to copy number alterations through genomic amplification. To investigate a role for CCT2 in the regulation of the cell cycle, we expressed an exogenous CCT2-FLAG construct in T47D and MCF7 luminal A breast cancer cells and examined cell proliferation under conditions of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. Exogenous CCT2 increased the proliferation of cancer cells, resulting in larger and multiple spheroids as compared to control cells. CCT2-expressing cells were also able to undergo spheroid growth reversal, re-attaching, and resuming growth in 2D cultures. Such cells gained anchorage-independent growth. CCT2 expression in cells correlated with increased expression of MYC, especially in spheroid cultures, and other cell cycle regulators like CCND1 and CDK2, indicative of a novel activity that could contribute to the increase in cell growth. Statistically significant correlations between CCT2, MYC, and CCND1 were shown. Since CCT2 is located on chromosome 12q15, an amplicon frequently found in soft tissue cancers as well as breast cancer, CCT2 may have the basic characteristics of an oncogene. Our findings suggest that CCT2 could be an essential driver of cell division that may be a node through which pathways involving MYC, cyclin D1 and other proliferative factors could converge. Hence the therapeutic inhibition of CCT2 may have the potential to achieve multi-target inhibition, overcoming the limitations associated with single agent inhibitors.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Adrian Showalter
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Xiang Zhu
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
25
|
Hsp60 Quantification in Human Gastric Mucosa Shows Differences between Pathologies with Various Degrees of Proliferation and Malignancy Grade. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Stomach diseases are an important sector of gastroenterology, including proliferative benign; premalignant; and malignant pathologies of the gastric mucosa, such as gastritis, hyperplastic polyps, metaplasia, dysplasia, and adenocarcinoma. There are data showing quantitative changes in chaperone system (CS) components in inflammatory pathologies and tumorigenesis, but their roles are poorly understood, and information pertaining to the stomach is scarce. Here, we report our findings on one CS component, the chaperone Hsp60, which we studied first considering its essential functions inside and outside mitochondria. Methods: We performed immunohistochemical experiments for Hsp60 in different samples of gastric mucosa. Results: The data obtained by quantitative analysis showed that the average percentages of Hsp60 were of 32.8 in normal mucosa; 33.5 in mild-to-moderate gastritis; 51.8 in severe gastritis; 58.5 in hyperplastic polyps; 67.0 in intestinal metaplasia; 89.4 in gastric dysplasia; and 92.5 in adenocarcinomas. Noteworthy were: (i) the difference between dysplasia and adenocarcinoma with the other pathologies; (ii) the progressive increase in Hsp60 from gastritis to hyperplastic polyp, gastric dysplasia, and gastric carcinoma; and (iii) the correlation of Hsp60 levels with histological patterns of cell proliferation and, especially, with tissue malignancy grades. Conclusions: This trend likely reflects the mounting need for cells for Hsp60 as they progress toward malignancy and is a useful indicator in differential diagnosis, as well as the call for research on the mechanisms underpinning the increase in Hsp60 and its possible roles in carcinogenesis.
Collapse
|