1
|
Shi Z, Zhou L, Zhou Y, Jia X, Yu X, An X, Han Y. Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway. BMB Rep 2022. [PMID: 35651328 PMCID: PMC9252889 DOI: 10.5483/bmbrep.2022.55.6.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Zhe Shi
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, China
| | - Liyuan Zhou
- Department of Gynaecology, Affiliated Hospital of Hebei Engineering University, Handan 056002, China
| | - Yan Zhou
- Department of Nursing, Medical College, Hebei University of Engineering, Handan 056002, China
| | - Xiaoyan Jia
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, China
| | - Xiangjun Yu
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, China
| | - Xiaohong An
- Department of Hospital Infection-Control, Jize County People’s Hospital, Jize 057350, China
| | - Yanzhen Han
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, China
| |
Collapse
|
2
|
Shi Z, Zhou L, Zhou Y, Jia X, Yu X, An X, Han Y. Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway. BMB Rep 2022; 55:299-304. [PMID: 35651328 PMCID: PMC9252889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 02/29/2024] Open
Abstract
Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway. [BMB Reports 2022; 55(6): 299-304].
Collapse
Affiliation(s)
- Zhe Shi
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Jize County People
| | - Liyuan Zhou
- Department of Gynaecology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Jize County People
| | - Yan Zhou
- Department of Nursing, Medical College, Hebei University of Engineering, Handan 056002, Jize County People
| | - Xiaoyan Jia
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Jize County People
| | - Xiangjun Yu
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Jize County People
| | - Xiaohong An
- Department of Hospital Infection-Control, Jize County People
| | - Yanzhen Han
- Department of General Surgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Jize County People
| |
Collapse
|
3
|
Luo Y, Liu X, Li X, Zhong W, Lin J, Chen Q. Identification and validation of a signature involving voltage-gated chloride ion channel genes for prediction of prostate cancer recurrence. Front Endocrinol (Lausanne) 2022; 13:1001634. [PMID: 36246902 PMCID: PMC9561150 DOI: 10.3389/fendo.2022.1001634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated chloride ion channels (CLCs) are transmembrane proteins that maintain chloride ion homeostasis in various cells. Accumulating studies indicated CLCs were related to cell growth, proliferation, and cell cycle. Nevertheless, the role of CLCs in prostate cancer (PCa) has not been systematically profiled. The purpose of this study was to investigate the expression profiles and biofunctions of CLCs genes, and construct a novel risk signature to predict biochemical recurrence (BCR) of PCa patients. We identified five differentially expressed CLCs genes in our cohort and then constructed a signature composed of CLCN2 and CLCN6 through Lasso-Cox regression analysis in the training cohort from the Cancer Genome Atlas (TCGA). The testing and entire cohorts from TCGA and the GSE21034 from the Gene Expression Omnibus (GEO) were used as internal and independent external validation datasets. This signature could divide PCa patients into the high and low risk groups with different prognoses, was apparently correlated with clinical features, and was an independent excellent prognostic indicator. Enrichment analysis indicated our signature was primarily concentrated in cellular process and metabolic process. The expression patterns of CLCN2 and CLCN6 were detected in our own cohort based immunohistochemistry staining, and we found CLCN2 and CLCN6 were highly expressed in PCa tissues compared with benign tissues and positively associated with higher Gleason score and shorter BCR-free time. Functional experiments revealed that CLCN2 and CLCN6 downregulation inhibited cell proliferation, colony formation, invasion, and migration, but prolonged cell cycle and promoted apoptosis. Furthermore, Seahorse assay showed that silencing CLCN2 or CLCN6 exerted potential inhibitory effects on energy metabolism in PCa. Collectively, our signature could provide a novel and robust strategy for the prognostic evaluation and improve treatment decision making for PCa patients.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaopeng Liu
- Department of Science and Teaching, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaoxiao Li
- Department of Nursing Administration, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Weide Zhong
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Jingbo Lin
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Qingbiao Chen
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| |
Collapse
|