1
|
Li L, Tianrui K, Chunlei L, Zhendong Q, Xiaoyan C, Wenhong D. HYDIN mutation status as a potential predictor of immune checkpoint inhibitor efficacy in melanoma. Aging (Albany NY) 2023; 15:7997-8012. [PMID: 37595251 PMCID: PMC10496993 DOI: 10.18632/aging.204925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND The advent of immune checkpoint inhibitors (ICIs) has altered the outlook for cancer treatment. The estimation of predictive biomarkers could contribute to maximizing the benefits from ICIs treatment. Here, we explored the association between HYDIN mutations (HYDIN-MUT) in melanoma and ICIs efficacy. METHODS Clinical data and sequencing data from published studies were utilized to assess the association between HYDIN-MUT and the efficacy of ICIs treatment in melanoma patients. RESULTS Compared to other tumor types, HYDIN (36.14%) has the highest mutation rate in melanoma patients. In the anti-PD-1 treated cohort (n = 254), the HYDIN-MUT patients had a longer OS after ICIs treatment than the HYDIN wild-type (HYDIN-WT) patients (HR = 0.590 [95% CI, 0.410-0.847], P = 0.004); the objective response rate (ORR) and durable clinical benefit (DCB) were increased in patients with HYDIN-MUT (ORR = 46.25, DCB = 56.00%) compared to patients with HYDIN-WT (ORR = 30.99%, DCB = 42.76%) (ORR: P = 0.019; DCB: P = 0.060). In the anti-CTLA4 treated cohort (n = 174), HYDIN-MUT patients achieved significantly longer OS than HYDIN-WT patients (HR = 0.549 [95% CI, 0.366-0.823], P = 0.003); the proportion of ORR and DCB in HYDIN-MUT patients was significantly higher than that in HYDIN-WT patients (ORR 40.54% vs. 14.42%, P = 0.031; DCB 45.76% vs. 22.22%, P = 0.002). Further gene set enrichment analysis demonstrated that DNA repair and anti-tumor immunity were significantly enhanced in HYDIN-MUT patients. CONCLUSIONS HYDIN mutations are a potential predictive biomarker of ICIs efficacy in melanoma patients.
Collapse
Affiliation(s)
- Liu Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Kuang Tianrui
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li Chunlei
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qiu Zhendong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chen Xiaoyan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Deng Wenhong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Neagu AN, Whitham D, Seymour L, Haaker N, Pelkey I, Darie CC. Proteomics-Based Identification of Dysregulated Proteins and Biomarker Discovery in Invasive Ductal Carcinoma, the Most Common Breast Cancer Subtype. Proteomes 2023; 11:13. [PMID: 37092454 PMCID: PMC10123686 DOI: 10.3390/proteomes11020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is the most common histological subtype of malignant breast cancer (BC), and accounts for 70-80% of all invasive BCs. IDC demonstrates great heterogeneity in clinical and histopathological characteristics, prognoses, treatment strategies, gene expressions, and proteomic profiles. Significant proteomic determinants of the progression from intraductal pre-invasive malignant lesions of the breast, which characterize a ductal carcinoma in situ (DCIS), to IDC, are still poorly identified, validated, and clinically applied. In the era of "6P" medicine, it remains a great challenge to determine which patients should be over-treated versus which need to be actively monitored without aggressive treatment. The major difficulties for designating DCIS to IDC progression may be solved by understanding the integrated genomic, transcriptomic, and proteomic bases of invasion. In this review, we showed that multiple proteomics-based techniques, such as LC-MS/MS, MALDI-ToF MS, SELDI-ToF-MS, MALDI-ToF/ToF MS, MALDI-MSI or MasSpec Pen, applied to in-tissue, off-tissue, BC cell lines and liquid biopsies, improve the diagnosis of IDC, as well as its prognosis and treatment monitoring. Classic proteomics strategies that allow the identification of dysregulated protein expressions, biological processes, and interrelated pathway analyses based on aberrant protein-protein interaction (PPI) networks have been improved to perform non-invasive/minimally invasive biomarker detection of early-stage IDC. Thus, in modern surgical oncology, highly sensitive, rapid, and accurate MS-based detection has been coupled with "proteome point sampling" methods that allow for proteomic profiling by in vivo "proteome point characterization", or by minimal tissue removal, for ex vivo accurate differentiation and delimitation of IDC. For the detection of low-molecular-weight proteins and protein fragments in bodily fluids, LC-MS/MS and MALDI-MS techniques may be coupled to enrich and capture methods which allow for the identification of early-stage IDC protein biomarkers that were previously invisible for MS-based techniques. Moreover, the detection and characterization of protein isoforms, including posttranslational modifications of proteins (PTMs), is also essential to emphasize specific molecular mechanisms, and to assure the early-stage detection of IDC of the breast.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Norman Haaker
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Isabella Pelkey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
3
|
Kuzmiak CM, Calhoun BC. Pure Mucinous Carcinoma of the Breast: Radiologic-Pathologic Correlation. JOURNAL OF BREAST IMAGING 2023; 5:180-187. [PMID: 38416927 DOI: 10.1093/jbi/wbac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 03/01/2024]
Abstract
Mucinous carcinoma (MC) of the breast is a rare, specialized subtype of invasive breast carcinoma (IBC) accounting for approximately 1% to 4% of all primary breast malignancies. Mucinous carcinoma occurs predominantly in patients who are postmenopausal or elderly. It is usually detected on screening mammography, but occasionally the patient may present with a palpable mass. The most common mammographic appearance is an equal to high density, oval or round mass with circumscribed or indistinct margins; MC can mimic a benign lesion. Histologically, MC is a well-differentiated cancer characterized by pools of mucin around neoplastic cells. Depending on mucin content, the tumor is classified as pure (≥90% mucin) or mixed (>10% and <90% mucin). Pure MCs (PMCs) are of low or intermediate nuclear grade, and the vast majority are hormone receptor-positive and human epidermal growth factor-2 receptor-negative (luminal A subtype). Pure MCs may be classified as hypocellular (type A) or hypercellular (type B) and have a lower rate of axillary lymph node involvement and more favorable prognosis than IBCs, no special type. The purpose of this article is to review the clinical features, imaging appearances, associated histopathology, and management of PMC.
Collapse
Affiliation(s)
- Cherie M Kuzmiak
- University of North Carolina, Department of Radiology, Chapel Hill, NC, USA
| | - Benjamin C Calhoun
- University of North Carolina, Department of Pathology & Laboratory Medicine, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Jung M. Mucinous carcinoma of the breast: distinctive histopathologic and genetic characteristics. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mucinous carcinoma is a rare histologic type of breast cancer that, when classified with favorable histology, can be treated with different therapeutic options. This study reviews the histologic findings of mucinous carcinoma that support or exclude favorable histology and emphasizes the necessity of an appropriate gross examination with radiologic findings for an accurate diagnosis. In addition, unusual findings such as micropapillary arrangements and lobular differentiation in mucinous carcinoma and their implications for prognosis and treatment are reviewed. Mucinous carcinoma involves upregulation of MUC2, a mucus-associated gene common in mucinous carcinoma of the breast as well as various other organs. In mucinous carcinoma, the fraction of genome altered and tumor mutation burden are lower than those of invasive carcinoma of no special type, the most common histology of breast cancer. In addition, the genetic alterations found in mucinous carcinoma are diverse, unlike the pathognomonic genetic alterations observed in other histologic types of breast cancer. These genetic features support the importance of conventional microscopic evaluations for the pathologic differential diagnosis of mucinous carcinoma of the breast in routine practice. A variety of breast lesions, including mucinous cystadenocarcinoma and mucocele-like lesions, as well as mucinous carcinoma from other organs, can mimic mucinous carcinoma of the breast. In order to obtain an accurate pathologic diagnosis, careful evaluation of the overall histopathologic characteristics and ancillary testing are required to provide information on appropriate treatment and prognosis.
Collapse
|
5
|
Yang M, Gao XR, Meng YN, Shen F, Chen YP. ETS1 Ameliorates Hyperoxia-Induced Alveolar Epithelial Cell Injury by Regulating the TGM2-Mediated Wnt/β-Catenin Pathway. Lung 2021; 199:681-690. [PMID: 34817668 DOI: 10.1007/s00408-021-00489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects newborns who need oxygen therapy, and high-concentration oxygen therapy may cause neonatal morbidity and mortality in newborns. E26 oncogene homologue 1 (ETS1) and transglutaminase 2 (TGM2) have been reported to be associated with lung cell injury. However, the mechanism of ETS1 in regulating BPD is still unclear. METHODS Hyperoxia-induced A549 cells to simulate hyperoxia-induced alveolar epithelial cell injury. MTT assays and colony formation assays were performed to investigate the proliferation of A549 cells. Flow cytometry was carried out to quantify the apoptosis of A549 cells. The expression levels of ETS1 and TGM2 were quantified by qRT-PCR. The protein expression levels of ETS1, TGM2, β-catenin, c-Jun and MET were measured by western blot. Overexpression of ETS1, overexpression of TGM2, overexpression of ETS1 with downregulation of TGM2 and overexpression of TGM2 with inhibition of Wnt/β-catenin pathway were performed to investigate the role of ETS1, TGM2 and Wnt/β-catenin pathways in hyperoxia-induced alveolar epithelial cell injury. RESULTS Hyperoxia decreased the proliferation and promoted the apoptosis of cells in a time-dependent manner. Moreover, overexpression of ETS1 rescued the effect of hyperoxia on proliferation and apoptosis. In addition, overexpression of TGM2 participated in the regulation of hyperoxia-induced proliferation and apoptosis. ETS1 regulated hyperoxia-induced alveolar epithelial cell injury through the Wnt/β-catenin pathway via TGM2. CONCLUSION ETS1 ameliorates hyperoxia-induced alveolar epithelial cell injury through the TGM2-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Xi-Rong Gao
- Neonate Department, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ni Meng
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ping Chen
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
6
|
Chen R, Wang Y, Li T, Lv J, Feng G, Tan N, Wang J, Cheng X. Oncotype DX 21-gene test has a low recurrence score in both pure and mixed mucinous breast carcinoma. Oncol Lett 2021; 22:771. [PMID: 34589150 PMCID: PMC8442227 DOI: 10.3892/ol.2021.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
The Oncotype DX 21-gene test can be used to predict chemotherapy efficacy in patients with estrogen receptor (ER)-positive and HER2-negative breast cancer; however, the data on the 21-gene recurrence score (RS) for mucinous breast carcinoma (MBC) are limited. The present study aimed to evaluate the distribution pattern and clinical value of the 21-gene RS in patients with MBC. A total of 38 pure MBC (PMBC) and 11 mixed MBC (MMBC) cases were retrospectively analyzed, and a total of 29 ER-positive and HER2-negative MBCs underwent the Oncotype DX 21-gene test. There were no statistically significant differences between the PMBCs and MMBCs in age, tumor size and molecular subtype; however, patients with MMBC showed a significantly higher incidence rate of nodal metastases compared with that in patients with PMBC (72.7 vs. 16.2%, respectively). Following surgery, 87.8 and 59.2% of the enrolled patients received endocrine therapy and chemotherapy, respectively. With a median follow-up of 65.6 months, the 5-year disease-free survival and overall survival rates were 97.0 and 100.0%, respectively. The 21-gene test revealed that the proportions of patients with MBC categorized into low (RS <18), intermediate (RS ≥18-30) and high (RS ≥30) risk groups were 51.7, 44.8 and 3.5%, respectively, and there was no statistically significant difference between the PMBC and MMBC cases. Notably, among the genes in the 21-gene RS testing, the expression levels of cathepsin V, progesterone receptor (PR) and CD68 were significantly higher in the PMBC group compared with that in the MMBC group. In conclusion, the current study demonstrated that patients with MBC had a favorable prognosis, and both PMBC and MMBC cases had a low- and intermediate-risk RS, which suggests that a considerable proportion of patients may be able to avoid chemotherapy. In addition, the high expression level of PR, based on the 21-gene test in PMBCs, indicated that they may have a more favorable response to endocrine therapy than MMBCs.
Collapse
Affiliation(s)
- Rui Chen
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yun Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junyuan Lv
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guoli Feng
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Na Tan
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jinjing Wang
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
7
|
Zhang M, Rodrigues A, Zhou Q, Li G. Focused ultrasound: growth potential and future directions in neurosurgery. J Neurooncol 2021; 156:23-32. [PMID: 34410576 DOI: 10.1007/s11060-021-03820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/31/2021] [Indexed: 12/18/2022]
Abstract
Over the past two decades, vast improvements in focused ultrasound (FUS) technology have made the therapy an exciting addition to the neurosurgical armamentarium. In this time period, FUS has gained US Food and Drug Administration (FDA) approval for the treatment of two neurological disorders, and ongoing efforts seek to expand the lesion profile that is amenable to ultrasonic intervention. In the following review, we highlight future applications for FUS therapy and compare its potential role against established technologies, including deep brain stimulation and stereotactic radiosurgery. Particular attention is paid to tissue ablation, blood-brain-barrier opening, and gene therapy. We also address technical and infrastructural challenges involved with FUS use and summarize the hurdles that must be overcome before FUS becomes widely accepted in the neurosurgical community.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA. .,Center for Academic Medicine, Neurosurgery, Stanford University School of Medicine, MC 5327, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Adrian Rodrigues
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Abstract
Cancer accounted for 16% of all death worldwide in 2018. Significant progress has been made in understanding tumor occurrence, progression, diagnosis, treatment, and prognosis at the molecular level. However, genomics changes cannot truly reflect the state of protein activity in the body due to the poor correlation between genes and proteins. Quantitative proteomics, capable of quantifying the relatively different protein abundance in cancer patients, has been increasingly adopted in cancer research. Quantitative proteomics has great application potentials, including cancer diagnosis, personalized therapeutic drug selection, real-time therapeutic effects and toxicity evaluation, prognosis and drug resistance evaluation, and new therapeutic target discovery. In this review, the development, testing samples, and detection methods of quantitative proteomics are introduced. The biomarkers identified by quantitative proteomics for clinical diagnosis, prognosis, and drug resistance are reviewed. The challenges and prospects of quantitative proteomics for personalized medicine are also discussed.
Collapse
|