1
|
Teng D, Xu Y, Meng Q, Yang Q. Unveiling the mystery of hepatic epithelioid angiomyolipoma: A unique case report with literature review. SAGE Open Med Case Rep 2025; 13:2050313X251314072. [PMID: 39835254 PMCID: PMC11744629 DOI: 10.1177/2050313x251314072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Hepatic epithelioid angiomyolipoma is a rare mesenchymal liver tumor within the perivascular epithelioid cell tumor family, known for its uncertain malignancy and potential for aggressive behavior. Clinical presentation, laboratory findings, and imaging results lack specificity, making pathological examination critical for definitive diagnosis. This case report presents a 61-year-old male patient with a single tumor in the right liver lobe, measuring approximately 101 mm × 99 mm. Initial imaging misdiagnosed the mass as hepatocellular carcinoma. Following multidisciplinary treatment discussions and subsequent tumor resection, histopathology and immunohistochemistry confirmed hepatic epithelioid angiomyolipoma. Accurate diagnosis of hepatic epithelioid angiomyolipoma is challenging, relying on histopathological examination and immunohistochemistry as diagnostic standards. Continuous monitoring of patients with hepatic epithelioid angiomyolipoma over an extended period is deemed essential. This report highlights the positive impact of multidisciplinary treatment in diagnosing and managing hepatic epithelioid angiomyolipoma.
Collapse
Affiliation(s)
- Da Teng
- Department of Hepatobiliary Pancreatic and Splenic Surgery Ward Ⅰ, The Affiliated ChuZhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), ChuZhou, China
| | - Yue Xu
- Department of Ultrasound Medicine, The Affiliated ChuZhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), ChuZhou, China
| | - Qingtao Meng
- Department of Radiology, The Affiliated ChuZhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), ChuZhou, China
| | - Qingsong Yang
- Department of Hepatobiliary Pancreatic and Splenic Surgery Ward Ⅰ, The Affiliated ChuZhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), ChuZhou, China
| |
Collapse
|
2
|
Arribas Anta J, Moreno-Vedia J, García López J, Rios-Vives MA, Munuera J, Rodríguez-Comas J. Artificial intelligence for detection and characterization of focal hepatic lesions: a review. Abdom Radiol (NY) 2024:10.1007/s00261-024-04597-x. [PMID: 39369107 DOI: 10.1007/s00261-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), play a crucial role in assessing these lesions. Artificial intelligence (AI), particularly deep learning (DL), offers potential solutions by analyzing large data to identify patterns and extract clinical features that aid in the early detection and classification of FLLs. This manuscript reviews the diagnostic capacity of AI-based algorithms in processing CT and MRIs to detect benign and malignant FLLs, with an emphasis in the characterization and classification of these lesions and focusing on differentiating benign from pre-malignant and potentially malignant lesions. A comprehensive literature search from January 2010 to April 2024 identified 45 relevant studies. The majority of AI systems employed convolutional neural networks (CNNs), with expert radiologists providing reference standards through manual lesion delineation, and histology as the gold standard. The studies reviewed indicate that AI-based algorithms demonstrate high accuracy, sensitivity, specificity, and AUCs in detecting and characterizing FLLs. These algorithms excel in differentiating between benign and malignant lesions, optimizing diagnostic protocols, and reducing the needs of invasive procedures. Future research should concentrate on the expansion of data sets, the improvement of model explainability, and the validation of AI tools across a range of clinical setting to ensure the applicability and reliability of such tools.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Department of Gastroenterology, University Hospital, 12 Octubre, Madrid, Spain
| | - Juan Moreno-Vedia
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Javier García López
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Miguel Angel Rios-Vives
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | | |
Collapse
|
3
|
Mohd Haniff NS, Ng KH, Kamal I, Mohd Zain N, Abdul Karim MK. Systematic review and meta-analysis on the classification metrics of machine learning algorithm based radiomics in hepatocellular carcinoma diagnosis. Heliyon 2024; 10:e36313. [PMID: 39253167 PMCID: PMC11382069 DOI: 10.1016/j.heliyon.2024.e36313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
The aim of this systematic review and meta-analysis is to evaluate the performance of classification metrics of machine learning-driven radiomics in diagnosing hepatocellular carcinoma (HCC). Following the PRISMA guidelines, a comprehensive search was conducted across three major scientific databases-PubMed, ScienceDirect, and Scopus-from 2018 to 2022. The search yielded a total of 436 articles pertinent to the application of machine learning and deep learning for HCC prediction. These studies collectively reflect the burgeoning interest and rapid advancements in employing artificial intelligence (AI)-driven radiomics for enhanced HCC diagnostic capabilities. After the screening process, 34 of these articles were chosen for the study. The area under curve (AUC), accuracy, specificity, and sensitivity of the proposed and basic models were assessed in each of the studies. Jamovi (version 1.1.9.0) was utilised to carry out a meta-analysis of 12 cohort studies to evaluate the classification accuracy rate. The risk of bias was estimated, and Logistic Regression was found to be the most suitable classifier for binary problems, with least absolute shrinkage and selection operator (LASSO) as the feature selector. The pooled proportion for HCC prediction classification was high for all performance metrics, with an AUC value of 0.86 (95 % CI: 0.83-0.88), accuracy of 0.83 (95 % CI: 0.78-0.88), sensitivity of 0.80 (95 % CI: 0.75-0.84) and specificity of 0.84 (95 % CI: 0.80-0.88). The performance of feature selectors, classifiers, and input features in detecting HCC and related factors was evaluated and it was observed that radiomics features extracted from medical images were adequate for AI to accurately distinguish the condition. HCC based radiomics has favourable predictive performance especially with addition of clinical features that may serve as tool that support clinical decision-making.
Collapse
Affiliation(s)
- Nurin Syazwina Mohd Haniff
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Izdihar Kamal
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
- Research Management Centre, KPJ Healthcare University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Norhayati Mohd Zain
- Research Management Centre, KPJ Healthcare University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Khalis Abdul Karim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Baishya NK, Baishya K, Baishya K, Sarma R, Ray S. MRI Radiomics in Imaging of Focal Hepatic Lesions: A Narrative Review. Cureus 2024; 16:e62570. [PMID: 39027765 PMCID: PMC11255417 DOI: 10.7759/cureus.62570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Magnetic resonance imaging (MRI) is generally used to identify, describe, and evaluate treatment responses for focal hepatic lesions. However, the diagnosis and differentiation of such lesions require considerable input from radiologists. In order to reduce these difficulties, radiomics is an artificial intelligence (AI)-based quantitative method that employs the extraction of image features to reliably detect and differentiate focal hepatic lesions. MRI radiomics is a novel technique for the characterization of focal hepatic lesions. It can aid in preoperative evaluation, treatment approach, and forecast microvascular invasion. Although many studies have illustrated its efficiency there are certain limitations such as the absence of a large diverse dataset, comparison with other AI models, integration with histopathological findings, clinical utility, and feasibility.
Collapse
Affiliation(s)
| | - Kangkana Baishya
- Electronics and Telecommunication, Assam Engineering College, Guwahati, IND
| | - Kakoli Baishya
- Radiodiagnosis, Fakhruddin Ali Ahmed Medical College and Hospital, Barpeta, IND
| | - Rahul Sarma
- Surgery, Guwahati Neurological Research Center (GNRC) Hospital, Guwahati, IND
| | - Sushmita Ray
- General Surgery, Fakhruddin Ali Ahmed Medical College and Hospital, Barpeta, IND
| |
Collapse
|
5
|
Lévi-Strauss T, Tortorici B, Lopez O, Viau P, Ouizeman DJ, Schall B, Adhoute X, Humbert O, Chevallier P, Gual P, Fillatre L, Anty R. Radiomics, a Promising New Discipline: Example of Hepatocellular Carcinoma. Diagnostics (Basel) 2023; 13:diagnostics13071303. [PMID: 37046521 PMCID: PMC10093101 DOI: 10.3390/diagnostics13071303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Radiomics is a discipline that involves studying medical images through their digital data. Using “artificial intelligence” algorithms, radiomics utilizes quantitative and high-throughput analysis of an image’s textural richness to obtain relevant information for clinicians, from diagnosis assistance to therapeutic guidance. Exploitation of these data could allow for a more detailed characterization of each phenotype, for each patient, making radiomics a new biomarker of interest, highly promising in the era of precision medicine. Moreover, radiomics is non-invasive, cost-effective, and easily reproducible in time. In the field of oncology, it performs an analysis of the entire tumor, which is impossible with a single biopsy but is essential for understanding the tumor’s heterogeneity and is known to be closely related to prognosis. However, current results are sometimes less accurate than expected and often require the addition of non-radiomics data to create a performing model. To highlight the strengths and weaknesses of this new technology, we take the example of hepatocellular carcinoma and show how radiomics could facilitate its diagnosis in difficult cases, predict certain histological features, and estimate treatment response, whether medical or surgical.
Collapse
Affiliation(s)
- Thomas Lévi-Strauss
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
| | - Bettina Tortorici
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Olivier Lopez
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Philippe Viau
- Department of Nuclear Medicine, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Dann J. Ouizeman
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
| | | | - Xavier Adhoute
- Saint Joseph Hospital, 26 Bd de Louvain, 13008 Marseille, France
| | - Olivier Humbert
- Centre Antoine-Lacassagne, Department of Nuclear Medicine, 33 Av. de Valombrose, 06100 Nice, France
- TIRO-UMR E 4320, Université Côte d’Azur, 06000 Nice, France
| | - Patrick Chevallier
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
- Correspondence: (P.G.); (R.A.)
| | | | - Rodolphe Anty
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
- INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
- Correspondence: (P.G.); (R.A.)
| |
Collapse
|
6
|
Jiang C, Cai YQ, Yang JJ, Ma CY, Chen JX, Huang L, Xiang Z, Wu J. Radiomics in the diagnosis and treatment of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00044-9. [PMID: 37019775 DOI: 10.1016/j.hbpd.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. At present, early diagnosis of HCC is difficult and therapeutic methods are limited. Radiomics can achieve accurate quantitative evaluation of the lesions without invasion, and has important value in the diagnosis and treatment of HCC. Radiomics features can predict the development of cancer in patients, serve as the basis for risk stratification of HCC patients, and help clinicians distinguish similar diseases, thus improving the diagnostic accuracy. Furthermore, the prediction of the treatment outcomes helps determine the treatment plan. Radiomics is also helpful in predicting the HCC recurrence, disease-free survival and overall survival. This review summarized the role of radiomics in the diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yi-Qi Cai
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Can-Yu Ma
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Xi Chen
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
7
|
Junhao L, Hongxia Z, Jiajun G, Ahmad I, Shanshan G, Jianke L, Lingli C, Yuan J, Mengsu Z, Mingliang W. Hepatic epithelioid angiomyolipoma: magnetic resonance imaging characteristics. Abdom Radiol (NY) 2023; 48:913-924. [PMID: 36732407 DOI: 10.1007/s00261-023-03818-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE The aim of the study was to analyze MR imaging features of hepatic epithelioid angiomyolipoma (HEAML). METHODS This study included 113 patients with 122 pathologically confirmed HEAML who underwent enhanced MRI scanning before partial hepatectomy. MR images were retrospectively reviewed and correlated with pathological findings. RESULTS The mean age of 113 patients was 48.12 ± 11.77 years old, and the male to female ratio was 1:3.35 with 87 females (76.99%). 107 (94.69%) patients presented as single tumor, and 96 patients (84.96%) were asymptomatic. 122 HEAML lesions were diagnosed pathologically in 113 patients, with the average of 4.47 ± 3.26 cm. 109 lesions (89.34%) and 108 lesions (88.52%) showed regular and well-defined boundary. On T1WI, 121 lesions (99.18%) mainly presented hypointensity. On T2WI, 118 lesions (96.72%) and 109 lesions (89.34%) mainly showed hyperintensity and heterogeneous signals. Most of the lesions (97.46%) showed hyperintensity on DWI. 118 lesions (96.72%) manifested as severe hyperenhancement and 106 lesions (86.89%) showed heterogeneity during the arterial phase. As for the lesion enhancement pattern, 73 lesions (59.84%) presented as persistent enhancement, 37 lesions (30.33%) as wash out, 8 lesions (6.56%) as degressive enhancement, and 4 lesions (3.28%) as poor blood supply. Additionally, 96 lesions (78.69%) with intra-tumor vessels and 85 lesions (69.67%) with outer rim were confirmed during the delayed phase. CONCLUSION At enhanced MRI, hypointensity on T1WI, hyperintensity and heterogeneous signals on T2WI, hyperintensity on DWI, little or no fat component, heterogenous hyperenhancement, persistent enhancement, intra-tumor vessels, and outer rim would be helpful to diagnose HEAML.
Collapse
Affiliation(s)
- Li Junhao
- Department of Radiology, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhang Hongxia
- Department of Radiology, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Nanjing, Jiangsu Province, China
| | - Guo Jiajun
- Department of Radiology, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ikram Ahmad
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao Shanshan
- Department of Radiology, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Jianke
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Lingli
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zeng Mengsu
- Department of Radiology, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Mingliang
- Department of Radiology, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Fang G, Fan J, Ding Z, Zeng Y. Application of biological big data and radiomics in hepatocellular carcinoma. ILIVER 2023; 2:41-49. [DOI: 10.1016/j.iliver.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
9
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
10
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
11
|
Wang L, Zhang L, Jiang B, Zhao K, Zhang Y, Xie X. Clinical application of deep learning and radiomics in hepatic disease imaging: a systematic scoping review. Br J Radiol 2022; 95:20211136. [PMID: 35816550 PMCID: PMC10162062 DOI: 10.1259/bjr.20211136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Artificial intelligence (AI) has begun to play a pivotal role in hepatic imaging. This systematic scoping review summarizes the latest progress of AI in evaluating hepatic diseases based on computed tomography (CT) and magnetic resonance (MR) imaging. METHODS We searched PubMed and Web of Science for publications, using terms related to deep learning, radiomics, imaging methods (CT or MR), and the liver. Two reviewers independently selected articles and extracted data from each eligible article. The Quality Assessment of Diagnostic Accuracy Studies-AI (QUADAS-AI) tool was used to assess the risk of bias and concerns regarding applicability. RESULTS The screening identified 45 high-quality publications from 235 candidates, including 8 on diffuse liver diseases and 37 on focal liver lesions. Nine studies used deep learning and 36 studies used radiomics. All 45 studies were rated as low risk of bias in patient selection and workflow, but 36 (80%) were rated as high risk of bias in the index test because they lacked external validation. In terms of concerns regarding applicability, all 45 studies were rated as low concerns. These studies demonstrated that deep learning and radiomics can evaluate liver fibrosis, cirrhosis, portal hypertension, and a series of complications caused by cirrhosis, predict the prognosis of malignant hepatic tumors, and differentiate focal hepatic lesions. CONCLUSIONS The latest studies have shown that deep learning and radiomics based on hepatic CT and MR imaging have potential application value in the diagnosis, treatment evaluation, and prognosis prediction of common liver diseases. The AI methods may become useful tools to support clinical decision-making in the future. ADVANCES IN KNOWLEDGE Deep learning and radiomics have shown their potential in the diagnosis, treatment evaluation, and prognosis prediction of a series of common diffuse liver diseases and focal liver lesions.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keke Zhao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
13
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
14
|
Fan PL, Ji ZB, Cao JY, Xu C, Dong Y, Wang WP. Baseline and contrast-enhanced ultrasound features of hepatic epithelioid angiomyolipoma. Clin Hemorheol Microcirc 2021; 80:447-461. [PMID: 34864652 DOI: 10.3233/ch-211305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recurrence or metastasis after surgery had been reported in hepatic epithelioid angiomylipoma (epi-AML). Most hepatic epi-AMLs were misdiagnosed with hepatocellular carcinoma or other hepatic tumors before surgery. OBJECTIVE To describe the baseline and contrast-enhanced ultrasound (CEUS) features of hepatic epi-AMLs and to explore the potential ultrasonic features for prognosis. METHODS The retrospective study enrolled 67 patients (56 females, 11 males) with 67 pathologically confirmed hepatic epi-AML lesions. All the lesions were examined by baseline ultrasound and 42 lesions were examined using CEUS with SonoVue (Bracco, Milan, Italy) before surgery. RESULTS Baseline ultrasound features of hepatic epi-AMLs included heterogeneous echo (86.6%), well-defined border (68.7%), hypoecho (64.2%), regular morphology (62.7%), peripheral-tumor arc-shaped or ring-like vessels (53.7%), and low value of resistive index (0.51±0.08). CEUS features of hepatic epi-AMLs included arterial phase hyper-enhancement with smooth and well-defined margin (100%), peripheral-tumor ring-like vessels (57.1%), and intra-tumor vessels (52.4%). Some CEUS features, including arterial phase heterogeneously tortuous filling, intra-tumor vessels and peripheral-tumor ring-like vessels were more commonly found in hepatic epi-AMLs of uncertain malignant potential/malignant than in benign hepatic epi-AMLs (p < 0.05). CONCLUSIONS Baseline ultrasound and CEUS features may be useful in diagnosis of hepatic epi-AML, and some CEUS features may be indicative of its malignant potential.
Collapse
Affiliation(s)
- Pei-Li Fan
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zheng-Biao Ji
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jia-Ying Cao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
15
|
Zhao X, Zhou Y, Zhang Y, Han L, Mao L, Yu Y, Li X, Zeng M, Wang M, Liu Z. Radiomics Based on Contrast-Enhanced MRI in Differentiation Between Fat-Poor Angiomyolipoma and Hepatocellular Carcinoma in Noncirrhotic Liver: A Multicenter Analysis. Front Oncol 2021; 11:744756. [PMID: 34722300 PMCID: PMC8548657 DOI: 10.3389/fonc.2021.744756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Objective This study aims to develop and externally validate a contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics-based model for preoperative differentiation between fat-poor angiomyolipoma (fp-AML) and hepatocellular carcinoma (HCC) in patients with noncirrhotic livers and to compare the diagnostic performance with that of two radiologists. Methods This retrospective study was performed with 165 patients with noncirrhotic livers from three medical centers. The dataset was divided into a training cohort (n = 99), a time-independent internal validation cohort (n = 24) from one center, and an external validation cohort (n = 42) from the remaining two centers. The volumes of interest were contoured on the arterial phase (AP) images and then registered to the venous phase (VP) and delayed phase (DP), and a total of 3,396 radiomics features were extracted from the three phases. After the joint mutual information maximization feature selection procedure, four radiomics logistic regression classifiers, including the AP model, VP model, DP model, and combined model, were built. The area under the receiver operating characteristic curve (AUC), diagnostic accuracy, sensitivity, and specificity of each radiomics model and those of two radiologists were evaluated and compared. Results The AUCs of the combined model reached 0.789 (95%CI, 0.579-0.999) in the internal validation cohort and 0.730 (95%CI, 0.563-0.896) in the external validation cohort, higher than the AP model (AUCs, 0.711 and 0.638) and significantly higher than the VP model (AUCs, 0.594 and 0.610) and the DP model (AUCs, 0.547 and 0.538). The diagnostic accuracy, sensitivity, and specificity of the combined model were 0.708, 0.625, and 0.750 in the internal validation cohort and 0.619, 0.786, and 0.536 in the external validation cohort, respectively. The AUCs for the two radiologists were 0.656 and 0.594 in the internal validation cohort and 0.643 and 0.500 in the external validation cohort. The AUCs of the combined model surpassed those of the two radiologists and were significantly higher than that of the junior one in both validation cohorts. Conclusions The proposed radiomics model based on triple-phase CE-MRI images was proven to be useful for differentiating between fp-AML and HCC and yielded comparable or better performance than two radiologists in different centers, with different scanners and different scanning parameters.
Collapse
Affiliation(s)
- Xiangtian Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yukun Zhou
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lujun Han
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Mao
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Yizhou Yu
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Xiuli Li
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingliang Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Gong XQ, Tao YY, Wu YK, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao-Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
17
|
Granata V, Grassi R, Fusco R, Belli A, Cutolo C, Pradella S, Grazzini G, La Porta M, Brunese MC, De Muzio F, Ottaiano A, Avallone A, Izzo F, Petrillo A. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma. Infect Agent Cancer 2021; 16:53. [PMID: 34281580 PMCID: PMC8287696 DOI: 10.1186/s13027-021-00393-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
This article provides an overview of diagnostic evaluation and ablation treatment assessment in Hepatocellular Carcinoma (HCC). Only studies, in the English language from January 2010 to January 202, evaluating the diagnostic tools and assessment of ablative therapies in HCC patients were included. We found 173 clinical studies that satisfied the inclusion criteria.HCC may be noninvasively diagnosed by imaging findings. Multiphase contrast-enhanced imaging is necessary to assess HCC. Intravenous extracellular contrast agents are used for CT, while the agents used for MRI may be extracellular or hepatobiliary. Both gadoxetate disodium and gadobenate dimeglumine may be used in hepatobiliary phase imaging. For treatment-naive patients undergoing CT, unenhanced imaging is optional; however, it is required in the post treatment setting for CT and all MRI studies. Late arterial phase is strongly preferred over early arterial phase. The choice of modality (CT, US/CEUS or MRI) and MRI contrast agent (extracelllar or hepatobiliary) depends on patient, institutional, and regional factors. MRI allows to link morfological and functional data in the HCC evaluation. Also, Radiomics is an emerging field in the assessment of HCC patients.Postablation imaging is necessary to assess the treatment results, to monitor evolution of the ablated tissue over time, and to evaluate for complications. Post- thermal treatments, imaging should be performed at regularly scheduled intervals to assess treatment response and to evaluate for new lesions and potential complications.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Milan, Italy
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Silvia Pradella
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Grazzini
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
18
|
Maruyama H, Yamaguchi T, Nagamatsu H, Shiina S. AI-Based Radiological Imaging for HCC: Current Status and Future of Ultrasound. Diagnostics (Basel) 2021; 11:diagnostics11020292. [PMID: 33673229 PMCID: PMC7918339 DOI: 10.3390/diagnostics11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Recent international guidelines request an identification of the stage and patient background/condition for an appropriate decision for the management direction. Radiomics is a technology based on the quantitative extraction of image characteristics from radiological imaging modalities. Artificial intelligence (AI) algorithms are the principal axis of the radiomics procedure and may provide various results from large data sets beyond conventional techniques. This review article focused on the application of the radiomics-related diagnosis of HCC using radiological imaging (computed tomography, magnetic resonance imaging, and ultrasound (B-mode, contrast-enhanced ultrasound, and elastography)), and discussed the current role, limitation and future of ultrasound. Although the evidence has shown the positive effect of AI-based ultrasound in the prediction of tumor characteristics and malignant potential, posttreatment response and prognosis, there are still a number of issues in the practical management of patients with HCC. It is highly expected that the wide range of applications of AI for ultrasound will support the further improvement of the diagnostic ability of HCC and provide a great benefit to the patients.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
- Correspondence: ; Tel.: +81-3-38133111; Fax: +81-3-56845960
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan;
| | - Hiroaki Nagamatsu
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| |
Collapse
|