1
|
Li Y, Zhou J, Liu L, Zhu C, Luo Z, Li N, Lyu P, Zhang J, Xie T, Ding Y, Xiao S. Association of SNPs in nAChRs genes, areca nut chewing and smoking, and their interaction with lung cancer in Hainan, China: a case control study. BMC Cancer 2025; 25:626. [PMID: 40197297 PMCID: PMC11974198 DOI: 10.1186/s12885-025-14020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Areca nut (AN) was classified as a carcinogen by the International Agency for Research on Cancer (IARC) of the WHO in 2003. AN has the same carcinogenic components as cigarettes, such as benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), but its effects on interactions with genetic factors related to lung cancer have rarely been investigated. METHODS: Here, a propensity score-matched case‒control study was conducted in Hainan, which included 445 patients with lung cancer and 445 cancer-free controls. Then, the associations between single-nucleotide polymorphisms (SNPs) in the CHRNA5-CHRNA3-CHRNB4 gene cluster and their interaction effects with AN chewing and smoking on lung cancer were analyzed. In addition, we explored the associations among AN, cigarettes, and genes related to lung cancer using the Comparative Toxicogenomics Database (CTD). RESULTS The results indicate that the CHRNA3 rs938682 (A > G) GG genotype (OR = 0.669, 95% CI = 0.454 ~ 0.984, P = 0.042) can decrease the risk of lung cancer. The CHRNB4 rs7178270 (C > G) GG genotype (OR = 1.729, 95% CI = 1.168 ~ 2.571, P = 0.006) can increase the risk of lung cancer. The CHRNA5 rs17486278 CC genotype was associated with a high risk in males, smokers, and drinkers. The CHRNA3 rs938682 GG genotype was associated with a low risk in AN chewers. The CHRNB4 rs7178270 GG genotype was associated with high risk in drinkers and AN chewers. CHRNB4 rs7178270 and AN chewing have an interaction effect on lung cancer in Hainan. CONCLUSIONS This study is the first to elucidate the hidden impacts of AN on lung cancer and provides a key evidence regarding the interactive effects of AN and cigarettes with SNPs in nAChRs genes on lung cancer.
Collapse
Affiliation(s)
- Yixuan Li
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Jing Zhou
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Lirong Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Chaoyong Zhu
- Medical Examination Center of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Ziyue Luo
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Na Li
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Pengfei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China.
| | - Sha Xiao
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China.
| |
Collapse
|
2
|
Li N, Chen S, Wang X, Zhang B, Zeng B, Sun C, Zheng K, Chen Q, Wang S. Identification of POU4F1 as a novel prognostic biomarker and therapeutic target in esophageal squamous cell carcinoma. Cancer Cell Int 2024; 24:280. [PMID: 39123235 PMCID: PMC11316379 DOI: 10.1186/s12935-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Esophageal cancer is a significant global health concern, ranking seventh in incidence and sixth in mortality. It encompasses two pathological types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma, with ESCC being more prevalent globally and associated with higher mortality rates. The POU (Pit-Oct-Unc) domain family transcription factors, comprising 15 members, play important roles in embryonic development and organ formation. Aberrant expression of POUs has been observed in several human cancers, influencing cell proliferation, tumor invasion, and drug resistance. However, their specific role in ESCC remains unknown. METHODS We analyzed TCGA and GEO databases to assess POUs expression in ESCC tissues. Kaplan-Meier and ROC analyses were used to evaluate the prognostic value of POUs. Gene Set Enrichment Analysis and Protein-Protein interaction network were used to explore the potential pathway. Functional assays (Cell Counting Kit-8, EdU Staining assay, and cloning formation assay) and mechanism analyses (RNA-seq, flow cytometry, and Western blot) were conducted to determine the effects of POU4F1 knockdown on ESCC cell phenotypes and signaling pathways. RESULTS POU4F1 and POU6F2 were upregulated in various cancer tissues, including ESCC, compared to normal tissues. POU4F1 expression was significantly correlated with patient survival and superior to previous models (AUC = 0.776). Knockdown of POU4F1 inhibited ESCC cell proliferation and affected cell cycle, autophagy, and DNA damage pathways in ESCC cells. CONCLUSION POU4F1 is a novel and promising prognostic and therapeutic target for ESCC patients, providing insights into potential treatment strategies.
Collapse
Affiliation(s)
- Nan Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Siying Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Boqing Zhang
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Boning Zeng
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Chao Sun
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Qiuling Chen
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Li Z, Wang Q, Huang X, Fu R, Wen X, Zhang L. Multi-omics analysis reveals that ferroptosis-related gene CISD2 is a prognostic biomarker of head and neck squamous cell carcinoma. J Gene Med 2024; 26:e3580. [PMID: 37581006 DOI: 10.1002/jgm.3580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy, with high mortality rate and unavailability of accurate therapies. However, its early prevention remains a challenge. In the purview of predictive, preventive, and personalized medicine (PPPM), it is paramount to identify novel and powerful biomarkers. CISD2 is a crucial regulator of iron homeostasis and reactive oxygen species (ROS). Recent studies showed that the NEET protein (NAF-1) encoded by CISD2 is involved in regulating the proliferation and metastasis of tumor cells. Nevertheless, the prognostic value and immunological correlations of CISD2 remain unclear. METHODS Bioinformatics analyses conducted utilizing data from comprehensive databases The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). All statistical evaluations were executed employing R software. RESULTS Our investigation of biological function, enrichment pathway, and immune correlation revealed a discernable linkage between CISD2 and the immune response. Moreover, we found that the suppression of CISD2 is associated with immune cell infiltration and various immune signatures. CONCLUSIONS The present study successfully revealed the potential prognostic and biological function of CISD2 in HNSCC. High expression of CISD2 are linked to gender, race, grade, etc., can notably enhance the early detection, prognosis, and prediction for individuals afflicted with HNSCC.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Español A, Sanchez Y, Salem A, Obregon J, Sales ME. Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells. World J Clin Oncol 2022; 13:505-519. [PMID: 35949430 PMCID: PMC9244968 DOI: 10.5306/wjco.v13.i6.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets. Resistance to chemotherapy complicates the course of patients’ treatment. Several authors have highlighted the participation of nicotinic acetylcholine receptors (nAChR) in the modulation of conventional chemotherapy treatment in cancers of the airways. However, in breast cancer, less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.
AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.
METHODS Cells were treated with paclitaxel alone or in combination with nicotine, administered for one or three 48-h cycles. The effect of the addition of nicotine (at a concentration similar to that found in passive smokers’ blood) on the treatment with paclitaxel (at a therapeutic concentration) was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The signaling mediators involved in this effect were determined using selective inhibitors. We also investigated nAChR expression, and ATP “binding cassette” G2 drug transporter (ABCG2) expression and its modulation by the different treatments with Western blot. The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.
RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functional α7 and α9 nAChRs in these cells. The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C, mitogen-activated protein kinase, extracellular signal-regulated kinase, and NF-κB signaling pathways, and to an up-regulation of ABCG2 protein expression. We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment. Moreover, the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.
CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors. Thus, nAChRs should be considered as targets in smoking patients.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jaqueline Obregon
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Maria Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
5
|
Li J, Xu Y, Peng G, Zhu K, Wu Z, Shi L, Wu G. Identification of the Nerve-Cancer Cross-Talk-Related Prognostic Gene Model in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:788671. [PMID: 34912722 PMCID: PMC8666427 DOI: 10.3389/fonc.2021.788671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
The incidence of head and neck squamous cell carcinoma (HNSC) is increasing year by year. The nerve is an important component of the tumor microenvironment, which has a wide range of cross-talk with tumor cells and immune cells, especially in highly innervated organs, such as head and neck cancer and pancreatic cancer. However, the role of cancer-nerve cross-talk-related genes (NCCGs) in HNSC is unclear. In our study, we constructed a prognostic model based on genes with prognostic value in NCCGs. We used Pearson’s correlation to analyze the relationship between NCCGs and immune infiltration, microsatellite instability, tumor mutation burden, drug sensitivity, and clinical stage. We used single-cell sequencing data to analyze the expression of genes associated with stage in different cells and explored the possible pathways affected by these genes via gene set enrichment analysis. In the TCGA-HNSC cohort, a total of 23 genes were up- or downregulated compared with normal tissues. GO and KEGG pathway analysis suggested that NCCGs are mainly concentrated in membrane potential regulation, chemical synapse, axon formation, and neuroreceptor-ligand interaction. Ten genes were identified as prognosis genes by Kaplan-Meier plotter and used as candidate genes for LASSO regression. We constructed a seven-gene prognostic model (NTRK1, L1CAM, GRIN3A, CHRNA5, CHRNA6, CHRNB4, CHRND). The model could effectively predict the 1-, 3-, and 5-year survival rates in the TCGA-HNSC cohort, and the effectiveness of the model was verified by external test data. The genes included in the model were significantly correlated with immune infiltration, microsatellite instability, tumor mutation burden, drug sensitivity, and clinical stage. Single-cell sequencing data of HNSC showed that CHRNB4 was mainly expressed in tumor cells, and multiple metabolic pathways were enriched in high CHRNB4 expression tumor cells. In summary, we used comprehensive bioinformatics analysis to construct a prognostic gene model and revealed the potential of NCCGs as therapeutic targets and prognostic biomarkers in HNSC.
Collapse
Affiliation(s)
- Jun Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhong Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangliang Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|