1
|
Gottardo A, Russo TDB, Perez A, Bono M, Di Giovanni E, Di Marco E, Siino R, Bannera CF, Mujacic C, Vitale MC, Contino S, Iannì G, Busuito G, Iacono F, Incorvaia L, Badalamenti G, Galvano A, Russo A, Bazan V, Gristina V. Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer. Cytopathology 2024; 35:664-670. [PMID: 38822635 DOI: 10.1111/cyt.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics - enabled by deep learning algorithms - offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.
Collapse
Affiliation(s)
- Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Enrico Di Marco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Rita Siino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | | | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Ntzifa A, Marras T, Kallergi G, Kotsakis A, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis for monitoring NSCLC patients under second-line osimertinib treatment. Front Oncol 2024; 14:1435537. [PMID: 39497713 PMCID: PMC11532185 DOI: 10.3389/fonc.2024.1435537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 11/07/2024] Open
Abstract
Background The heterogeneous and complex genetic landscape of NSCLC impacts the clinical outcomes of patients who will eventually develop resistance to osimertinib. Liquid biopsy (LB) analysis as a minimally invasive approach is a key step to efficiently identify resistance mechanisms and adjust to proper subsequent treatments. Materials and methods In the present study, we combined plasma-cfDNA and CTC analysis from 30 NSCLC patients in samples collected before treatment and at the progression of disease (PD). We detected molecular alterations at the DNA mutation (EGFR, PIK3CA, KRAS G12C, BRAF V600E), DNA methylation (RASSF1A, BRMS1, FOXA1, SLFN1, SHISA3, RARβ,, WIF-1, RASSF10 and APC), gene expression (CK-19, CK-18, CK-8, AXL, TWIST-1, PD-L1, PIM-1, Vimentin, ALDH-1, and B2M) and chromosomal level (HER2 and MET amplification) as possible resistance mechanisms and druggable targets. We also studied the expression of PD-L1 in single CTCs using immunofluorescence. Results In some cases, T790M resistance EGFR mutation was detected at baseline in CTCs but not in the corresponding plasma cfDNA. PIK3CA mutations were detected only in plasma-cfDNA but not in corresponding CTCs. KRAS G12C and BRAF V600E mutations were not detected in the samples analyzed. MET amplification was detected in the CTCs of two patients before treatment whereas HER2 amplification was detected in the CTCs of three patients at baseline and in one patient at PD. DNA methylation analysis revealed low concordance between CTCs and cfDNA, indicating the complementary information obtained through parallel LB analysis. Results from gene expression analysis indicated high rates of vimentin-positive CTCs detected at all time points during osimertinib. Moreover, there was an increased number of NSCLC patients at PD harboring CTCs positive in PD-L1. AXL and PIM-1 expression detected in CTCs during treatment suggesting new possible therapeutic strategies. Discussion Our results reveal that comprehensive liquid biopsy analysis can efficiently represent the heterogeneous molecular landscape and provide prominent information on subsequent treatments for NSCLC patients at PD since druggable molecular alterations were detected in CTCs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, Larissa, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Zhang J, Li Y, Huang W, Sun G, Ren H, Tang M. An ultrasensitive DNA-enhanced amplification method for detecting cfDNA drug-resistant mutations in non-small cell lung cancer with selective FEN-assisted degradation of dominant somatic fragments. Clin Chem Lab Med 2024:cclm-2024-0614. [PMID: 39089988 DOI: 10.1515/cclm-2024-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5 %) could be easily detected by DNA-enhanced amplification. CONCLUSIONS This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.
Collapse
Affiliation(s)
- Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
4
|
Smit DJ, Schneegans S, Pantel K. Clinical applications of circulating tumor cells in patients with solid tumors. Clin Exp Metastasis 2024; 41:403-411. [PMID: 38281256 PMCID: PMC11374849 DOI: 10.1007/s10585-024-10267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Svenja Schneegans
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Guo DZ, Huang A, Wang YC, Zhou S, Wang H, Xing XL, Zhang SY, Cheng JW, Xie KH, Yang QC, Ma CC, Li Q, Chen Y, Su ZX, Fan J, Liu R, Liu XL, Zhou J, Yang XR. Early detection and prognosis evaluation for hepatocellular carcinoma by circulating tumour DNA methylation: A multicentre cohort study. Clin Transl Med 2024; 14:e1652. [PMID: 38741204 DOI: 10.1002/ctm2.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | | | - Hui Wang
- Singlera Genomics Ltd., Shanghai, China
| | - Xiang-Lei Xing
- Biliary Tract Surgery Department IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | | | | | | | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Chen
- XiangYa Medical Laboratory, Central South University, Changsha, Hunan, China
| | - Zhi-Xi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Rui Liu
- Singlera Genomics Ltd., Shanghai, China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
6
|
Zhang X, He Z. Cell Membrane Coated pH-Responsive Intelligent Bionic Delivery Nanoplatform for Active Targeting in Photothermal Therapy. Int J Nanomedicine 2023; 18:7729-7744. [PMID: 38115989 PMCID: PMC10729683 DOI: 10.2147/ijn.s436940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Aim To produce pH-responsive bionic high photothermal conversion nanoparticles actively targeting tumors for sensitizing photothermal therapy (PTT). Materials and Methods The bionic nanoparticles (ICG-PEI@HM NPs) were prepared by electrostatic adsorption of indocyanine green (ICG) coupled to polyethyleneimine (PEI) and modified with tumor cell membranes. In vitro and in vivo experiments were conducted to investigate the efficacy of ICG-PEI@HM-mediated PTT. Results The intelligent responsiveness of ICG-PEI@HM to pH promoted the accumulation of ICG and enhanced the PTT performance of ICG-PEI@HM NPs. Compared with free ICG, NPs exhibited great photothermal stability, cellular uptake, and active tumor targeting for PTT. Conclusion ICG-PEI@HM NPs can enhance the efficacy of PTT and can be used as a new strategy for the construction of photothermal agents.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Zelai He
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College & Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
7
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
8
|
Kim IA, Hur JY, Kim HJ, Kim WS, Lee KY. A prospective phase 2 study of expeditious EGFR genotyping and immediate therapeutic initiation through extracellular vesicles (EV)-based bronchoalveolar lavage fluid (BALF) liquid biopsy in advanced NSCLC patients. Transl Lung Cancer Res 2023; 12:1425-1435. [PMID: 37577304 PMCID: PMC10413015 DOI: 10.21037/tlcr-22-892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/30/2023] [Indexed: 08/15/2023]
Abstract
Background In our previous study, epidermal growth factor receptor (EGFR) genotyping using extracellular vesicles (EV)-derived DNA isolated from bronchoalveolar lavage fluid (BALF) was proven to be highly concordant with conventional tissue-based genotyping and its turn-around-time (TAT) was only 1-2 days. On this background, we prospectively validated the performance of EV-based BALF liquid biopsy for EGFR genotyping in the real practice of advanced non-small cell lung cancer (NSCLC) patients. Methods After screening 120 newly diagnosed stage III-IV NSCLC patients, 51 cases were detected as EGFR-mutated by EV-based BALF EGFR genotyping and 40 patients were enrolled for gefitinib treatment. BALF EV were isolated by ultracentrifuge method and EGFR genotyping was performed with PCR-based PNA-clamping assisted fluorescence melting curve analysis. The objective response rate, progression-free survival (PFS), TAT, time to treatment initiation (TTI), and concordance rate were analyzed with clinical parameters. Results There was only one false positive case among the 120 screened patients and the overall concordance rate between tissue biopsy and EV-based BALF liquid biopsy was 99.2% including the subtype of EGFR mutations. TAT for EV-based BALF EGFR genotyping was 1.9±1.1 days, while tissue-based TAT was 12.1±7.2 days (P<0.001). EGFR genotyping was determined even before obtaining histopathologic report in most cases. TTI in BALF EGFR genotyping was faster than tissue genotyping (7.8±6.5 vs. 13.8±12.9 days). Therapeutic outcomes of response rate and PFS were almost similar to tissue-based results. Conclusions We demonstrated, for the first time, that EV-based BALF liquid biopsy should be an excellent platform for expeditious EGFR genotyping and rapid therapeutic intervention even before obtaining the result of histopathology in advanced NSCLC patients.
Collapse
Affiliation(s)
- In Ae Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Joung Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan Seop Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Rotem O, Zer A, Yosef L, Beery E, Goldvaser H, Gutkin A, Levin R, Dudnik E, Berger T, Feinmesser M, Levy-Barda A, Lahav M, Raanani P, Uziel O. Blood-Derived Exosomal hTERT mRNA in Patients with Lung Cancer: Characterization and Correlation with Response to Therapy. Biomedicines 2023; 11:1730. [PMID: 37371825 DOI: 10.3390/biomedicines11061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Telomerase (human telomerase reverse transcriptase (hTERT) is considered a hallmark of cancer, being active in cancer cells but repressed in human somatic cells. As such, it has the potential to serve as a valid cancer biomarker. Exosomal hTERT mRNA can be detected in the serum of patients with solid malignancies but not in healthy individuals. We sought to evaluate the feasibility of measuring serum exosomal hTERT transcripts levels in patients with lung cancer. Methods: A prospective analysis of exosomal hTERT mRNA levels was determined in serum-derived exosomes from 76 patients with stage III-IV lung cancer (11 SCLC and 65 NSCLC). An hTERT level above RQ = 1.2 was considered "detectable" according to a previous receiver operating characteristic curve (ROC) curve. Sequential measurements were obtained in 33 patients. Demographic and clinical data were collected retrospectively from patients' charts. Data on response to systemic therapy (chemotherapy, immunotherapy, and tyrosine kinase inhibitors) were collected by the treating physicians. Results: hTERT was detected in 53% (40/76) of patients with lung cancer (89% of SCLC and 46% of NSLCC). The mean hTERT levels were 3.7 in all 76 patients, 5.87 in SCLC patients, and 3.62 in NSCLC patients. In total, 25 of 43 patients with sequential measurements had detectable levels of hTERT. The sequential exosomal hTERT mRNA levels reflected the clinical course in 23 of them. Decreases in hTERT levels were detected in 17 and 5 patients with partial and complete response, respectively. Eleven patients with a progressive disease had an increase in the level of exosomal hTERT, and seven with stable disease presented increases in its exosomal levels. Another patient who progressed on the first line of treatment and had a partial response to the second line of treatment exhibited an increase in exosomal hTERT mRNA levels during the progression and a decrease during the response. Conclusions: Exosomal hTERT mRNA levels are elevated in over half of patients with lung cancer. The potential association between hTERT levels and response to therapy suggests its utility as a promising cancer biomarker for response to therapy. This issue should be further explored in future studies.
Collapse
Affiliation(s)
- Ofer Rotem
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Alona Zer
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lilach Yosef
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Hadar Goldvaser
- Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, Rehovot 7612001, Israel
| | - Anna Gutkin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Ron Levin
- Sheba Medical Center, Ramat Gan 5262000, Israel
| | - Elizabeth Dudnik
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Tamar Berger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Meora Feinmesser
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Meir Lahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Orit Uziel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| |
Collapse
|
10
|
Markou AN, Londra D, Stergiopoulou D, Vamvakaris I, Potaris K, Pateras IS, Kotsakis A, Georgoulias V, Lianidou E. Preoperative Mutational Analysis of Circulating Tumor Cells (CTCs) and Plasma-cfDNA Provides Complementary Information for Early Prediction of Relapse: A Pilot Study in Early-Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15061877. [PMID: 36980762 PMCID: PMC10047138 DOI: 10.3390/cancers15061877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE We assessed whether preoperativemutational analyses of circulating tumor cells (CTCs) and plasma-cfDNA could be used as minimally invasive biomarkers and as complimentary tools for early prediction of relapse in early-stage non-small -cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Using ddPCR assays, hotspot mutations of BRAF, KRAS, EGFR and PIK3CA were identified in plasma-cfDNA samples and size-based enriched CTCs isolated from the same blood samples of 49 early-stage NSCLC patients before surgery and in a control group of healthy blood donors (n= 22). Direct concordance of the mutational spectrum was further evaluated in 27 patient-matched plasma-cfDNA and CTC-derived DNA in comparison to tissue-derived DNA. RESULTS The prevalence of detectable mutations of the four tested genes was higher in CTC-derived DNA than in the corresponding plasma-cfDNA (38.8% and 24.5%, respectively).The most commonly mutated gene was PIK3CA, in both CTCs and plasma-cfDNA at baseline and at the time of relapse. Direct comparison of the mutation status of selected drug-responsive genes in CTC-derived DNA, corresponding plasma-cfDNA and paired primary FFPE tissues clearly showed the impact of heterogeneity both within a sample type, as well as between different sample components. The incidence of relapse was higher when at least one mutation was detected in CTC-derived DNA or plasma-cfDNA compared with patients in whom no mutation was detected (p =0.023). Univariate analysis showed a significantly higher risk of progression (HR: 2.716; 95% CI, 1.030-7.165; p =0.043) in patients with detectable mutations in plasma-cfDNA compared with patients with undetectable mutations, whereas the hazard ratio was higher when at least one mutation was detected in CTC-derived DNA or plasma-cfDNA (HR: 3.375; 95% CI, 1.098-10.375; p =0.034). CONCLUSIONS Simultaneous mutational analyses of plasma-cfDNA and CTC-derived DNA provided complementary molecular information from the same blood sample and greater diversity in genomic information for cancer treatment and prognosis. The detection of specific mutations in ctDNA and CTCs in patients with early-stage NSCLC before surgery was independently associated with disease recurrence, which represents an important stratification factor for future trials.
Collapse
Affiliation(s)
- A N Markou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - D Londra
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - D Stergiopoulou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - I Vamvakaris
- Department of Pathology; 'Sotiria' General Hospital for Chest Diseases, 11527 Athens, Greece
| | - K Potaris
- Department of Thoracic Surgery, 'Sotiria' General Hospital for Chest Diseases, 11527 Athens, Greece
| | - I S Pateras
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, "ATTIKON" General Hospital of Athens, 12452 Athens, Greece
| | - A Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Thessaly, Greece
| | - V Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, 15562 Cholargos, Greece
| | - E Lianidou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
11
|
Xiao J, Sharma U, Arab A, Miglani S, Bhalla S, Suguru S, Suter R, Mukherji R, Lippman ME, Pohlmann PR, Zeck JC, Marshall JL, Weinberg BA, He AR, Noel MS, Schlegel R, Goodarzi H, Agarwal S. Propagated Circulating Tumor Cells Uncover the Potential Role of NFκB, EMT, and TGFβ Signaling Pathways and COP1 in Metastasis. Cancers (Basel) 2023; 15:1831. [PMID: 36980717 PMCID: PMC10046547 DOI: 10.3390/cancers15061831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFβ signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (BCAR1, COL1A1, IGSF3, RRAD, and TFPI2). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 (COP1) as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.
Collapse
Affiliation(s)
- Jerry Xiao
- School of Medicine, Georgetown University, Washington, DC 20057, USA
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Utsav Sharma
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sonakshi Bhalla
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Shravanthy Suguru
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Robert Suter
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Reetu Mukherji
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marc E. Lippman
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Paula R. Pohlmann
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Jay C. Zeck
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - John L. Marshall
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Benjamin A. Weinberg
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aiwu Ruth He
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marcus S. Noel
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
12
|
Zhang H, Hu Y, Wang Y, Song X, Hu Y, Ma L, Yang X, Li K, Qin N, Wang J, Lv J, Li X, Zhang X, Zhang Q, Wu Y, Yao G, Zhang S. Application of ddPCR in detection of the status and abundance of EGFR T790M mutation in the plasma samples of non-small cell lung cancer patients. Front Oncol 2023; 12:942123. [PMID: 36776375 PMCID: PMC9909534 DOI: 10.3389/fonc.2022.942123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background/Objective The third-generation epidermal growth factor receptor (EGFR) -tyrosine kinase inhibitor (TKIs), such as osimertinib, designed for targeting the acquired drug-resistant mutation of EGFR T790M, was approved as the first-line therapy for advanced EGFR-mutated non-small cell lung cancer (NSCLC). Thus, detection of the EGFR T790M mutation for NSCLC is crucial. However, tissue samples are often difficult to obtain, especially in patients at advanced stages. This study assessed the performances of droplet digital polymerase chain reaction (ddPCR) and next-generation sequencing (NGS) in detecting EGFR T790M status and abundance in the plasma ctDNA samples of patients with NSCLC. We also explored the association between T790M status and abundance and the response to third-generation EGFR-TKIs. Methods A total of 201 plasma samples with matched tissues, 821 plasma samples, and 56 patients who received third-generation EGFR-TKIs with response evaluation were included in this study. ddPCR and NGS were used to detect the mutation status and abundance of T790M in the tissues and/or blood samples. Results The results showed that the sensitivity and the specificity of EGFR T790M mutation status detected by ddPCR in plasma samples were 81.82% and 91.85%, respectively, compared with the tissue samples, with a consistency coefficient of 0.740. Among the 821 plasma samples, the positive rates of EGFR T790M detected by ddPCR and NGS were 34.2% (281/821) and 22.5% (185/821), respectively. With NGS results as the reference, the sensitivity and the specificity of ddPCR were 100% and 84.91%, respectively, and the consistency coefficient of the two methods was 0.717. In addition, we found that a higher EGFR T790M abundance was linked to a higher treatment response rate to the third-generation EGFR-TKIs regardless of the classification of the median value of 0.43% (P = 0.016) or average value of 3.16% (P = 0.010). Conclusion Taking these data together, this study reveals that ddPCR is an alternatively potent method for the detection of EGFR T790M in the plasma samples of NSCLC patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Song
- Department of Respiratory, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Hu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Li Ma
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinjie Yang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Kun Li
- Department of Pathology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Na Qin
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jialin Lv
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xi Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinyong Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Quan Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Guangyin Yao
- Department of Medicine, Shanghai Yuanqi Biomedical Technology Co. Ltd., Shanghai, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,*Correspondence: Shucai Zhang,
| |
Collapse
|
13
|
Gaitonde P, Chirikov V, Kelkar S, Liljas B. Considerations for the Utility of Real-World Evidence Beyond Trial Data in Advanced NSCLC: The Case of Frontline Tyrosine Kinase Inhibitors. Cancer Manag Res 2022; 14:3421-3435. [PMID: 36514307 PMCID: PMC9741849 DOI: 10.2147/cmar.s380857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022] Open
Abstract
Background To extend the discussion on the use of real-world evidence (RWE) in conveying the clinical value of treatment beyond trial data, the primary objective of this study was to assess if efficacy gains in progression-free survival (PFS) observed in randomized controlled trials (RCT) correlate with efficacy gains in the real-world setting. For this, we assessed the treatment benefit of three tyrosine kinase inhibitors (TKIs) in aNSCLC. Methods Using matched cohorts identified in the Flatiron Health database (2011-2020), we mimicked the following cohorts of TKI versus platinum-based chemotherapy (PBC) from the following trials: (1) erlotinib, EURTAC; (2) afatinib, LUX-Lung 3; and (3) crizotinib, PROFILE 1014. Time to treatment discontinuation (TTD) hazard ratio (HR) was used as a proxy for PFS HR, the primary endpoint in the selected RCTs. HRs were calculated via Cox proportional hazard models. Results Overall, 1,118 patients were included across the three RWE cohorts. Frontline TKI regimens had statistically significantly better real-world TTD than their matched PBC comparator group (HR 0.37, 95% confidence interval [CI] 0.30-0.44 for erlotinib; HR 0.42, 95% CI 0.32-0.55 for afatinib; HR 0.37, 95% CI 0.26-0.53 for crizotinib). The benefit in real-world OS was not different between TKIs and PBC patients, attributed to a high proportion of switching to subsequent therapy. Study findings of relative treatment benefit (HR) for real-world TTD and OS were deemed similar to those for PFS and OS from the pivotal RCTs. Conclusion The relative treatment effect, measured as real-world TTD HR over the long term, was similar to trial-based PFS HR, implying that the clinical benefit of aNSCLC treatments conveyed in trials translated into the clinical setting. This is important, given that OS data interpretation is limited, even with longer follow-up. Additionally, our RWE analysis endorses TTD as a relevant endpoint to measure clinical benefit.
Collapse
Affiliation(s)
- Priyanka Gaitonde
- AstraZeneca, Health Economics & Payer Evidence, Gaithersburg, MD, USA,Correspondence: Priyanka Gaitonde, Oncology Market Access and Pricing, AstraZeneca, 200 Orchard Ridge Drive, Gaithersburg, MD, 20878, USA, Email
| | | | - Sneha Kelkar
- OPEN Health Evidence & Access, Bethesda, MD, USA
| | - Bengt Liljas
- AstraZeneca, Health Economics & Payer Evidence, Gaithersburg, MD, USA
| |
Collapse
|
14
|
Montella M, Ciani G, Granata V, Fusco R, Grassi F, Ronchi A, Cozzolino I, Franco R, Zito Marino F, Urraro F, Monti R, Sirica R, Savarese G, Chianese U, Nebbioso A, Altucci L, Vietri MT, Nardone V, Reginelli A, Grassi R. Preliminary Experience of Liquid Biopsy in Lung Cancer Compared to Conventional Assessment: Light and Shadows. J Pers Med 2022; 12:jpm12111896. [PMID: 36422072 PMCID: PMC9698369 DOI: 10.3390/jpm12111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To assess the qualitative relationship between liquid biopsy and conventional tissue biopsy. As a secondary target, we evaluated the relationship between the liquid biopsy results and the T stage, N stage, M stage, and compared to grading. Methods: The Local Ethics Committee of the “Università degli Studi della Campania Luigi Vanvitelli”, with the internal resolution number 24997/2020 of 12.11.2020, approved this spontaneous prospective study. According to the approved protocol, patients with lung cancer who underwent Fine-Needle Aspiration Cytology (FNAC), CT-guided biopsy, and liquid biopsy were enrolled. A Yates chi-square test was employed to analyze differences in percentage values of categorical variables. A p-value < 0.05 was considered statistically significant. Data analysis was performed using the Matlab Statistic Toolbox (The MathWorks, Inc., Natick, MA, USA). Results: When a genetic mutation is present on the pathological examination, this was also detected on the liquid biopsy. ROS1 and PDL1 mutations were found in 2/29 patients, while EGFR Exon 21 was identified in a single patient. At liquid biopsy, 26 mutations were identified in the analyzed samples. The mutations with the highest prevalence rate in the study populations were: ALK (Ile1461Val), found in 28/29 patients (96.6%), EML4 (Lys398Arg), identified in 16/29 (55.2%) patients, ALK (Asp1529Glu), found in 14/29 (48.3%) patients, EGFR (Arg521Lys), found in 12/29 (41.4%) patients, ROS (Lys2228Gln), identified in 11/29 (37.9%) patients, ROS (Arg167Gln) and ROS (Ser2229Cys), identified in 10/29 (34.5%) patients, ALK (Lys1491Arg) and PIK3CA (Ile391Met), identified in 8/29 (27.6%) patients, ROS (Thr145Pro), identified in 6/29 (20.7%) patients, and ROS (Ser1109Leu), identified in 4/29 (13.8%) patients. No statistically significant differences can be observed in the mutation rate between the adenocarcinoma population and the squamous carcinoma population (p > 0.05, Yates chi-square test). Conclusions: We showed that, when a genetic mutation was detected in pathological examination, this was always detected by liquid biopsy, demonstrating a very high concordance rate of genomic testing between tissues and their corresponding mutations obtained by liquid biopsy, without cases of false-negative results. In addition, in our study, liquid biopsy highlighted 26 mutations, with the prevalence of ALK mutation in 96.6% of patients, supporting the idea that this approach could be an effective tool in cases with insufficient tumor tissue specimens or in cases where tissue specimens are not obtainable.
Collapse
Affiliation(s)
- Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Ciani
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Riccardo Monti
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Roberto Sirica
- AMES-Centro Polidiagnostico Strumentale, SRL, 80013 Naples, Italy
| | | | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valerio Nardone
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| |
Collapse
|
15
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
16
|
Jie X, Du M, Zhang M, Jin X, Cai Q, Xu C, Zhang X. Mutation analysis of circulating tumor DNA and paired ascites and tumor tissues in ovarian cancer. Exp Ther Med 2022; 24:542. [PMID: 35978934 PMCID: PMC9366257 DOI: 10.3892/etm.2022.11479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is one conventional type of liquid biopsy that can be collected to dynamically monitor disease status. However, its potential clinical value and concordance with ascites samples or tumor biopsy needs to be evaluated further for patients with ovarian cancer. Therefore, the present study compared the mutation profiles among ctDNA, paired tumor tissue and ascites samples to explore their possible clinical value in ovarian cancer. Targeted next-generation sequencing was used to screen for mutations in 18 peripheral blood samples, six paired ascites samples and eight paired tumor tissues collected from patients with ovarian cancer. Functional analyses were performed using public databases. WebGestalt was used to perform Gene Ontology and pathway enrichment analyses. The cBioPortal for Cancer Genomics was used to assess therapeutic targets. Chilibot and Search Tool for the Retrieval of Interacting Genes/Proteins were used to obtain key genes and their functional interactions. Comparative analysis was performed among the three types of samples using Venn diagram. A total of 104 cancer-associated mutant genes in ctDNA samples, 95 genes in tumor tissues and 44 genes in ascites samples were found. A cluster covering 10 genes, namely NOTCH2, NOTCH3, lysine methyltransferase 2A, PTEN, androgen receptor, DNA-activated protein kinase catalytic subunit, hepatocyte nuclear factor 1 homeobox A, SRC, insulin receptor substrate 2 and SRY-box transcription factor 10, was obtained by Chilibot analysis. This gene panel may have the potential to monitor metastasis and identify therapeutic targets in ovarian cancer. Taken together, the present study focused on the mutant genes in ctDNA, ascites and tumor tissues, and suggested that the integrated information of different samples could be examined to comprehensively reflect the mutational landscape in ovarian cancer. However, procedures and protocols to interpret and utilize the integrated information obtained from various forms of liquid biopsies will require optimization prior to their use for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiang Jie
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Ming Du
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Meng Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiayu Jin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Qingqing Cai
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiaoyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Kim IA, Hur JY, Kim HJ, Kim WS, Lee KY. Extracellular Vesicle-Based Bronchoalveolar Lavage Fluid Liquid Biopsy for EGFR Mutation Testing in Advanced Non-Squamous NSCLC. Cancers (Basel) 2022; 14:cancers14112744. [PMID: 35681723 PMCID: PMC9179452 DOI: 10.3390/cancers14112744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
To overcome the limitations of the tissue biopsy and plasma cfDNA liquid biopsy, we performed the EV-based BALF liquid biopsy of 224 newly diagnosed stage III-IV NSCLC patients and compared it with tissue genotyping and 110 plasma liquid biopsies. Isolation of EVs from BALF was performed by ultracentrifugation. EGFR genotyping was performed through peptide nucleic acid clamping-assisted fluorescence melting curve analysis. Compared with tissue-based genotyping, BALF liquid biopsy demonstrated a sensitivity, specificity, and concordance rates of 97.8%, 96.9%, and 97.7%, respectively. The performance of BALF liquid biopsy was almost identical to that of standard tissue-based genotyping. In contrast, plasma cfDNA-based liquid biopsy (n = 110) demonstrated sensitivity, specificity, and concordance rates of 48.5%, 86.3%, and 63.6%, respectively. The mean turn-around time of BALF liquid biopsy was significantly shorter (2.6 days) than that of tissue-based genotyping (13.9 days; p < 0.001). Therefore, the use of EV-based BALF shortens the time for confirmation of EGFR mutation status for starting EGFR-TKI treatment and can hence potentially improve clinical outcomes. As a result, we suggest that EV-based BALF EGFR testing in advanced lung NSCLC is a highly accurate rapid method and can be used as an alternative method for lung tissue biopsy.
Collapse
Affiliation(s)
- In Ae Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea; (I.A.K.); (J.Y.H.); (H.J.K.); (W.S.K.)
| | - Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea; (I.A.K.); (J.Y.H.); (H.J.K.); (W.S.K.)
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Hee Joung Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea; (I.A.K.); (J.Y.H.); (H.J.K.); (W.S.K.)
- Department of Pathology, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Wan Seop Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea; (I.A.K.); (J.Y.H.); (H.J.K.); (W.S.K.)
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea; (I.A.K.); (J.Y.H.); (H.J.K.); (W.S.K.)
- Department of Pathology, Konkuk University School of Medicine, Seoul 05030, Korea
- Exosignal, Inc., Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7784
| |
Collapse
|
18
|
Carvalho Â, Guimarães-Teixeira C, Constâncio V, Fernandes M, Macedo-Silva C, Henrique R, Monteiro FJ, Jerónimo C. One sample fits all: a microfluidic-assisted methodology for label-free isolation of CTCs with downstream methylation analysis of cfDNA in lung cancer. Biomater Sci 2022; 10:3296-3308. [PMID: 35583893 DOI: 10.1039/d2bm00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lung cancer (LC) is a major cause of mortality. Late diagnosis, associated with limitations in tissue biopsies for adequate tumor characterization contribute to limited survival of lung cancer patients. Liquid biopsies have been introduced to improve tumor characetrization through the analysis of biomarkers, including circulating tumour cells (CTCs) and cell-free DNA (cfDNA). Considering their availability in blood, several enrichment strategies have been developed to augment circulating biomarkers for improving diagnostic, prognostic and treament efficacy assessment; often, however, only one biomarker is tested. In this work we developed and implemented a microfluidic chip for label-free enrichment of CTCs with a methodology for subsequent cfDNA analysis from the same cryopreserved sample. CTCs were successfully isolated in 38 of 42 LC patients with the microfluidic chip. CTCs frequency was significantly higher in LC patients with advanced disease. A cut-off of 1 CTC per mL was established for diagnosis (sensitivity = 76.19%, specificity = 100%) and in patients with late stage lung cancer, the presence of ≥5 CTCs per mL was significantly associated with shorter overall survival. MIR129-2me and ADCY4me panel of cfDNA methylation performed well for LC detection, whereas MIR129-2me combined with HOXA11me allowed for patient risk stratification. Analysis of combinations of biomarkers enabled the definition of panels for LC diagnosis and prognosis. Overall, this study demonstrates that multimodal analysis of tumour biomarkers via microfluidic devices may significantly improve LC characterization in cryopreserved samples, constituting a reliable source for continuous disease monitoring.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Vera Constâncio
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Mariana Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina Macedo-Silva
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
19
|
Djamgoz MBA. Ion Transporting Proteins and Cancer: Progress and Perspectives. Rev Physiol Biochem Pharmacol 2022; 183:251-277. [PMID: 35018530 DOI: 10.1007/112_2021_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK. .,Biotechnology Research Centre, Cyprus International University, Nicosia, Mersin, Turkey.
| |
Collapse
|
20
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
21
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
22
|
Tieng FYF, Abu N, Nasir SN, Lee LH, Ab Mutalib NS. Liquid Biopsy-Based Colorectal Cancer Screening via Surface Markers of Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2136. [PMID: 34829483 PMCID: PMC8618170 DOI: 10.3390/diagnostics11112136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is ranked second for cancer-related deaths worldwide with approximately half of the patients being diagnosed at the late stages. The untimely detection of CRC results in advancement to the metastatic stage and nearly 90% of cancer-related deaths. The early detection of CRC is crucial to decrease its overall incidence and mortality rates. The recent introduction of circulating tumor cells (CTCs) has enabled a less invasive sampling method from liquid biopsies, besides revealing key information toward CRC metastasis. The current gold standard for CTC identification is the CellSearch® system (Veridex). This first-generation instrumentation relies on a single cell surface marker (CSM) to capture and count CTCs. Detection of CTCs allows the identification of patients at risk for metastasis, whereas CTC enumeration could improve risk assessment, monitoring of systemic therapy, and detection of therapy resistance in advanced metastatic CRC. In this review, we compared the pros and cons between single CSM-based CTC enrichment techniques and multi-marker-based systems. We also highlighted the challenges faced in the routine implementation of CSM-dependent CTC detection methods in CRC screening, prediction, prognosis, disease monitoring, and therapy selection toward precision medicine, as well as the dwelling on post-CTC analysis and characterization methods.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
23
|
Kim CJ, Dong L, Amend SR, Cho YK, Pienta KJ. The role of liquid biopsies in prostate cancer management. LAB ON A CHIP 2021; 21:3263-3288. [PMID: 34346466 DOI: 10.1039/d1lc00485a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid biopsy has emerged as a complement to invasive tissue biopsy to guide cancer diagnosis and treatment. The common liquid biopsy biomarkers are circulating tumor cells (CTCs), extracellular vesicles (EVs), and circulating tumor DNA (ctDNA). Each biomarker provides specific information based on its intrinsic characteristics. Prostate cancer is the second most common cancer in males worldwide. In men with low-grade localized prostate cancer, the disease can often be managed by active surveillance. For men who require treatment, the 5-year survival rate of localized prostate cancer is the highest among all cancer types, but the metastatic disease remains incurable. Metastatic prostate cancer invariably progresses to involve multiple bone sites and develops into a castration-resistant disease that leads to cancer death. The need to appropriately diagnose and guide the serial treatment of men with prostate cancer has led to the implementation of many studies to apply liquid biopsies to prostate cancer management. This review describes recent advancements in isolation and detection technology and the strength and weaknesses of the three circulating biomarkers. The clinical studies based on liquid biopsy results are summarized to depict the future perspective in the role of liquid biopsy on prostate cancer management.
Collapse
Affiliation(s)
- Chi-Ju Kim
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
24
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
25
|
Ntzifa A, Kotsakis A, Georgoulias V, Lianidou E. Detection of EGFR Mutations in Plasma cfDNA and Paired CTCs of NSCLC Patients before and after Osimertinib Therapy Using Crystal Digital PCR. Cancers (Basel) 2021; 13:2736. [PMID: 34073111 PMCID: PMC8197887 DOI: 10.3390/cancers13112736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has clinical utility in EGFR mutant NSCLC. Circulating tumor cells (CTCs) consist a unique source of information at the cellular level. Digital PCR (dPCR) is a valuable tool for accurate and valid analysis of gene mutations in liquid biopsy analysis. In the present study we detected EGFR mutations in ctDNA and paired CTCs under osimertinib therapy at two time points using crystal dPCR and the naica® system (Stilla Technologies). We quantified mutation allele frequencies (MAF) of EGFR mutations in 91 plasma cfDNA samples of 48 EGFR mutant NSCLC patients and in 64 matched CTC-derived genomic DNA samples, and the FDA-cleared cobas® EGFR mutation test in 80 identical plasma samples. Direct comparison between crystal dPCR and the cobas EGFR assay revealed a high concordance for all EGFR mutations. Our comparison of crystal dPCR results in ctDNA with the corresponding primary tissue has shown a strong correlation. EGFR mutations analysis in paired CTC-derived gDNA revealed a high heterogeneity. Crystal dPCR offers the unique advantages of high analytical sensitivity, precision, and accuracy for detecting and quantifying multiple EGFR mutations in plasma cfDNA and CTCs of NSCLC patients.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, 41110 Larissa, Greece;
| | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| |
Collapse
|
26
|
Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Tumour Malignancies with Next-Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther 2021; 25:389-408. [PMID: 34018157 PMCID: PMC8249304 DOI: 10.1007/s40291-021-00534-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Circulating cell-free DNA (ccfDNA) has emerged as a promising diagnostic tool in oncology. Identification of tumour-derived ccfDNA (i.e. circulating tumour DNA [ctDNA]) provides non-invasive access to a malignancy’s molecular landscape to diagnose, inform therapeutic strategies, and monitor treatment efficacy. Current applications of ccfDNA to detect somatic mutations, however, have been largely constrained to tumour-informed searches and identification of common mutations because of the interaction between ctDNA signal and next-generation sequencing (NGS) noise. Specifically, the low allele frequency of ctDNA associated with non-metastatic and early-stage lesions may be indistinguishable from artifacts that accrue during sample preparation and NGS. Thus, using ccfDNA to achieve non-invasive and personalized molecular profiling to optimize individual patient care is a highly sought goal that remains limited in clinical practice. There is growing evidence, however, that further advances in the field of ccfDNA diagnostics may be achieved by improving detection of somatic mutations through leveraging the inherently shorter fragment lengths of ctDNA compared to non-neoplastic ccfDNA. Here, the origins and rationale for seeking to improve the mutation-based detection of ctDNA by using ccfDNA size profiling are reviewed. Subsequently, in vitro and in silico methods to enrich for a target ccfDNA fragment length are detailed to identify current practices and provide perspective into the potential of using ccfDNA size profiling to impact clinical applications in oncology.
Collapse
Affiliation(s)
- Hunter R Underhill
- Division of Medical Genetics, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA. .,Department of Radiology, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Keup C, Suryaprakash V, Hauch S, Storbeck M, Hahn P, Sprenger-Haussels M, Kolberg HC, Tewes M, Hoffmann O, Kimmig R, Kasimir-Bauer S. Integrative statistical analyses of multiple liquid biopsy analytes in metastatic breast cancer. Genome Med 2021; 13:85. [PMID: 34001236 PMCID: PMC8130163 DOI: 10.1186/s13073-021-00902-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Single liquid biopsy analytes (LBAs) have been utilized for therapy selection in metastatic breast cancer (MBC). We performed integrative statistical analyses to examine the clinical relevance of using multiple LBAs: matched circulating tumor cell (CTC) mRNA, CTC genomic DNA (gDNA), extracellular vesicle (EV) mRNA, and cell-free DNA (cfDNA). Methods Blood was drawn from 26 hormone receptor-positive, HER2-negative MBC patients. CTC mRNA and EV mRNA were analyzed using a multi-marker qPCR. Plasma from CTC-depleted blood was utilized for cfDNA isolation. gDNA from CTCs was isolated from mRNA-depleted CTC lysates. CTC gDNA and cfDNA were analyzed by targeted sequencing. Hierarchical clustering was performed within each analyte, and its results were combined into a score termed Evaluation of multiple Liquid biopsy analytes In Metastatic breast cancer patients All from one blood sample (ELIMA.score), which calculates the contribution of each analyte to the overall survival prediction. Singular value decomposition (SVD), mutual information calculation, k-means clustering, and graph-theoretic analysis were conducted to elucidate the dependence between individual analytes. Results A combination of two/three/four LBAs increased the prevalence of patients with actionable signals. Aggregating the results of hierarchical clustering of individual LBAs into the ELIMA.score resulted in a highly significant correlation with overall survival, thereby bolstering evidence for the additive value of using multiple LBAs. Computation of mutual information indicated that none of the LBAs is independent of the others, but the ability of a single LBA to describe the others is rather limited—only CTC gDNA could partially describe the other three LBAs. SVD revealed that the strongest singular vectors originate from all four LBAs, but a majority originated from CTC gDNA. After k-means clustering of patients based on parameters of all four LBAs, the graph-theoretic analysis revealed CTC ERBB2 variants only in patients belonging to one particular cluster. Conclusions The additional benefits of using all four LBAs were objectively demonstrated in this pilot study, which also indicated a relative dominance of CTC gDNA over the other LBAs. Consequently, a multi-parametric liquid biopsy approach deconvolutes the genomic and transcriptomic complexity and should be considered in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00902-1.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | | | | | | | | | | | - Hans-Christian Kolberg
- Department of Gynecology and Obstetrics, Marienhospital Bottrop, 46236, Bottrop, Germany
| | - Mitra Tewes
- Department of Medical Oncology, University Hospital of Essen, 45122, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
28
|
Li Y, Zheng Y, Wu L, Li J, Ji J, Yu Q, Dai W, Feng J, Wu J, Guo C. Current status of ctDNA in precision oncology for hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:140. [PMID: 33902698 PMCID: PMC8074474 DOI: 10.1186/s13046-021-01940-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
The conventional method used to obtain a tumor biopsy for hepatocellular carcinoma (HCC) is invasive and does not evaluate dynamic cancer progression or assess tumor heterogeneity. It is thus imperative to create a novel non-invasive diagnostic technique for improvement in cancer screening, diagnosis, treatment selection, response assessment, and predicting prognosis for HCC. Circulating tumor DNA (ctDNA) is a non-invasive liquid biopsy method that reveals cancer-specific genetic and epigenetic aberrations. Owing to the development of technology in next-generation sequencing and PCR-based assays, the detection and quantification of ctDNA have greatly improved. In this publication, we provide an overview of current technologies used to detect ctDNA, the ctDNA markers utilized, and recent advances regarding the multiple clinical applications in the field of precision medicine for HCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
29
|
Yang L, Yan X, Chen J, Zhan Q, Hua Y, Xu S, Li Z, Wang Z, Dong Y, Zuo D, Xue M, Tang Y, Herschman HR, Lu S, Shi Q, Wei W. Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients. Proc Natl Acad Sci U S A 2021; 118:e2012228118. [PMID: 33836566 PMCID: PMC7980452 DOI: 10.1073/pnas.2012228118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike other epithelial cancer types, circulating tumor cells (CTCs) are less frequently detected in the peripheral blood of non-small cell lung cancer (NSCLC) patients using epithelial marker-based detection approaches despite the aggressive nature of NSCLC. Here, we demonstrate hexokinase-2 (HK2) as a metabolic function-associated marker for the detection of CTCs. In 59 NSCLC patients bearing cytokeratin-positive (CKpos) primary tumors, HK2 enables resolving cytokeratin-negative (HK2high/CKneg) CTCs as a prevalent population in about half of the peripheral blood samples with positive CTC counts. However, HK2high/CKneg tumor cells are a minority population in pleural effusions and cerebrospinal fluids. Single-cell analysis shows that HK2high/CKneg CTCs exhibit smaller sizes but consistent copy number variation profiles compared with CKpos counterparts. Single-cell transcriptome profiling reveals that CK expression levels of CTCs are independent of their epithelial-to-mesenchymal transition (EMT) status, challenging the long-standing association between CK expression and EMT. HK2high/CKneg CTCs display metastasis and EGFR inhibitor resistance-related molecular signatures and are selectively enriched in patients with EGFRL858R driver oncogene mutation as opposed to EGFR19Del , which is more frequently found in patients with prevalent CKpos CTCs in the blood. Consistently, treatment-naïve patients with a larger number or proportion of HK2high/CKneg CTCs in the blood exhibit poor therapy response and shorter progression-free survival. Collectively, our approach resolves a more complete spectrum of CTCs in NSCLC that can potentially be exploited to identify patient prognosis before therapy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, WA 98109
| | - Jie Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhuo Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Yu Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Min Xue
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Yin Tang
- Institute for Systems Biology, Seattle, WA 98109
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China;
| | - Qihui Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China;
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Wei Wei
- Institute for Systems Biology, Seattle, WA 98109;
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
30
|
Siggillino A, Ulivi P, Pasini L, Reda MS, Chiadini E, Tofanetti FR, Baglivo S, Metro G, Crinó L, Delmonte A, Minotti V, Roila F, Ludovini V. Detection of EGFR Mutations in Plasma Cell-Free Tumor DNA of TKI-Treated Advanced-NSCLC Patients by Three Methodologies: Scorpion-ARMS, PNAClamp, and Digital PCR. Diagnostics (Basel) 2020; 10:diagnostics10121062. [PMID: 33297595 PMCID: PMC7762356 DOI: 10.3390/diagnostics10121062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Analysis of circulating cell-free tumor DNA (cftDNA) has emerged as a specific and sensitive blood-based approach to detect epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. Still, there is some debate on what should be the preferential clinical method for plasma-derived cftDNA analysis. We tested 31 NSCLC patients treated with anti-EGFR tyrosine kinase inhibitors (TKIs), at baseline and serially during therapy, by comparing three methodologies in detecting EGFR mutations (L858R, exon 19 deletion, and T790M) from plasma: scorpions-amplification refractory mutation system (ARMS) methodology by using EGFR Plasma RGQ PCR Kit-QIAGEN, peptide nucleic acid (PNA) clamp and PANA RealTyper integration by using PNAClamp EGFR-PANAGENE, and digital real time PCR by using QuantStudio 3D Digital PCR System-Thermo Fisher Scientific. Specificity was 100% for all three mutations, independently from the platform used. The sensitivity for L858R (42.86%) and T790M (100%) did not change based on the method, while the sensitivity for Del 19 differed markedly (Scorpion-ARMS 45%, PNAClamp 75%, and Digital PCR 85%). The detection rate was also higher (94.23%) as measured by Digital PCR, and when we monitored the evolution of EGFR mutations over time, it evidenced the extreme inter-patient heterogeneity in terms of levels of circulating mutated copies. In our study, Digital PCR showed the best correlation with tissue biopsy and the highest sensitivity to attain the potential clinical utility of monitoring plasma levels of EGFR mutations.
Collapse
Affiliation(s)
- Annamaria Siggillino
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (P.U.); (E.C.)
| | - Luigi Pasini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (P.U.); (E.C.)
- Correspondence:
| | - Maria Sole Reda
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Elisa Chiadini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (P.U.); (E.C.)
| | - Francesca Romana Tofanetti
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Sara Baglivo
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Giulio Metro
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Lucio Crinó
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (L.C.); (A.D.)
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (L.C.); (A.D.)
| | - Vincenzo Minotti
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Fausto Roila
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| | - Vienna Ludovini
- Medical Oncology Division, S. Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.S.); (M.S.R.); (F.R.T.); (S.B.); (G.M.); (V.M.); (F.R.); (V.L.)
| |
Collapse
|