1
|
Kurre D, Dang PX, Le LTM, Gadkari VV, Alam A. Structural insights into binding-site access and ligand recognition by human ABCB1. EMBO J 2025:10.1038/s44318-025-00361-z. [PMID: 39806099 DOI: 10.1038/s44318-025-00361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.4-3.9 Å resolution, in the absence of stabilizing antibodies or mutations. The substrate-binding site is located within one half of the molecule and, in the apo state, is obstructed by the transmembrane helix (TM) 4. Substrate and inhibitor binding are distinguished by major TM rearrangements and their ligand binding chemistry, with TM4 playing a central role in all conformational transitions. Furthermore, our data identify secondary structure-breaking residues that impart localized TM flexibility and asymmetry between the two transmembrane domains. The resulting structural changes and lipid interactions that are induced by substrate and inhibitor binding can predict substrate-binding profiles and may direct ABCB1 inhibitor design.
Collapse
Affiliation(s)
- Devanshu Kurre
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Phuoc X Dang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Pharmacy-Inpatient, Mayo Clinic, Rochester, MN, 55901, USA
| | - Le T M Le
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Varun V Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amer Alam
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
2
|
Liu B, Lu Y, Lin R, Xu J, Shang Z, Hou X, Shao X, Pan Z, Yu T, Feng W. Preclinical studies of the falnidamol as a highly potent and specific active ABCB1 transporter inhibitor. BMC Cancer 2025; 25:24. [PMID: 39773145 PMCID: PMC11707883 DOI: 10.1186/s12885-024-13371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND ABCB1 overexpression is a key factor in causing multidrug resistance (MDR). As a result, it is crucial to discover effective medications against ABCB1 to overcome MDR. Falnidamol, a tyrosine kinase inhibitor (TKI) targeting the epidermal growth factor receptor (EGFR), is currently in phase 1 clinical trials for the treatment of solid tumors. In this work, we assessed whether falnidamol could act as an inhibitor of ABCB1 to reverse ABCB1-mediated MDR. METHODS The reversal effect of falnidamol on MDR was assessed by MTT, colony formation, 3D microsphere, and xenograft model assays. The protein expression or cellular localization was tested by western blot and immunofluorescence analysis. The intracellular doxorubicin accumulation and efflux were assessed by flow cytometry. The ATPase activity of ABCB1 was detected by a microplate reader. The interaction between falnidamol and ABCB1 was evaluated by docking analysis and cellular thermal shift assay. RESULTS Our data showed that falnidamol specifically reversed ABCB1-mediated MDR but not ABCG2-mediated MDR in vitro and in vivo. Mechanistic studies suggested falnidamol had no effect on ABCB1 expression or cellular localization, nor on the AKT or ERK pathways. Further studies found that falnidamol reduced ABCB1's efflux function, resulting in enhanced intracellular agent accumulation and thus overcoming MDR. ATPase assay showed that falnidamol suppressed the ABCB1 ATPase activity. Furthermore, docking analysis and cellular thermal shift assay indicated that falnidamol bound directly to the drug-binding site of ABCB1 transporter. CONCLUSION The present study proves that falnidamol acts as a highly potent and specific active ABCB1 transporter inhibitor, and can reverse ABCB1-mediated MDR, implying that combining falnidamol with ABCB1 substrate chemotherapeutic agents has the potential to overcome ABCB1-mediated MDR.
Collapse
Affiliation(s)
- Baojie Liu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yongzheng Lu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Ruihui Lin
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Junbao Xu
- Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, 250102, P.R. China
| | - Zilin Shang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xinyu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xulong Shao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China
| | - Zhifang Pan
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
| | - Tao Yu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Weiguo Feng
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
| |
Collapse
|
3
|
Nazari S, Poustforoosh A, Paul PR, Kukreti R, Tavakkoli M, Saso L, Firuzi O, Moosavi F. c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells. 3 Biotech 2025; 15:2. [PMID: 39650809 PMCID: PMC11618280 DOI: 10.1007/s13205-024-04162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the potential of MET kinase inhibitors, cabozantinib, crizotinib, and PHA665752, in reversing multidrug resistance (MDR) mediated by ABCB1 in cancer cells. The accumulation of the fluorescent probe, Rhodamine 123, was assessed using flow cytometry and fluorescence microscopy in MDR MES-SA/DX5 and parental cells. The growth inhibitory activity of MET inhibitors as monotherapies and in combination with chemotherapeutic drugs was evaluated by MTT assay. CalcuSyn software was used to analyze the combination index (CI) as an index of drug-drug interaction in combination treatments. Results showed that at concentrations of 5, and 25 μM, c-MET inhibitors significantly increased Rhodamine 123 accumulation in MDR cells, with ratios up to 17.8 compared to control cells, while exhibiting no effect in parental cells. Additionally, the combination of c-MET inhibitors with the chemotherapeutic agent doxorubicin synergistically enhanced cytotoxicity in MDR cells, as evidenced by combination index (CI) values of 0.54 ± 0.08, 0.69 ± 0.1, and 0.85 ± 0.07 for cabozantinib, crizotinib, and PHA665752, respectively. While all three c-MET inhibitors stimulated ABCB1 ATPase activity in different manners at certain concentrations, PHA-665752 suppressed it at high concentration. In silico analysis also suggested that the transmembrane domains (TMD) of ABCB1 transporters could be considered potential target for these agents. Our results suggest that c-MET inhibitors can serve as promising MDR reversal agents in ABCB1-medicated drug-resistant cancer cells.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zheng S, Chen R, Zhang L, Tan L, Li L, Long F, Wang T. Unraveling the future: Innovative design strategies and emerging challenges in HER2-targeted tyrosine kinase inhibitors for cancer therapy. Eur J Med Chem 2024; 276:116702. [PMID: 39059182 DOI: 10.1016/j.ejmech.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor-like protein with tyrosine kinase activity that plays a vital role in processes such as cell proliferation, differentiation, and angiogenesis. The degree of malignancy of different cancers, notably breast cancer, is strongly associated with HER2 amplification, overexpression, and mutation. Currently, widely used clinical HER2 tyrosine kinase inhibitors (TKIs), such as lapatinib and neratinib, have several drawbacks, including susceptibility to drug resistance caused by HER2 mutations and adverse effects from insufficient HER2 selectivity. To address these issues, it is essential to create innovative HER2 TKIs with enhanced safety, effectiveness against mutations, and high selectivity. Typically, SPH5030 has advanced to phase I clinical trials for its strong suppression of four HER2 mutations. This review discusses the latest research progress in HER2 TKIs, with a focus on the structural optimization process and structure-activity relationship analysis. In particular, this study highlights promising design strategies to address these challenges, providing insightful information and inspiration for future development in this field.
Collapse
Affiliation(s)
- Sixiang Zheng
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ruixian Chen
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lintao Li
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wang P, Kong G. Comprehensive Analysis of Angiogenesis and Ferroptosis Genes for Predicting the Survival Outcome and Immunotherapy Response of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1845-1859. [PMID: 39364435 PMCID: PMC11448465 DOI: 10.2147/jhc.s483647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
Background Angiogenesis and ferroptosis are both linked to hepatocellular carcinoma (HCC) development, recurrence, and medication resistance. As a result, a thorough examination of the link between genes associated with angiogenesis and ferroptosis and immunotherapy efficacy is required to improve the dismal prognosis of HCC patients. Methods The molecular subtypes were found using a non-negative matrix factorization technique (NMF) based on the genes associated with angiogenesis and ferroptosis. Based on the differentially expressed genes (DEGs) screed between different molecular subtypes, an angiogenesis and ferroptosis-related prognostic stratification model was built using LASSO-COX regression, random forest technique, and extreme gradient boosting (XGBoost), which was further validated in the ICGC and GSE14520 databases. The impact of this model on tumor microenvironment (TME) and immunotherapy sensitivity was also investigated. The expression levels of candidate genes were detected and validated by Real-Time PCR and immunohistochemistry between liver cancer tissues and adjacent non-tumor liver tissues. Results Both angiogenesis and ferroptosis-related genes can significantly divide HCC patients into two subgroups with different survival outcomes, mutation profiles, and immune microenvironments. We screened six core genes (SLC10A1, PAEP, DPYSL4, MSC, NQO1, and CD24) for the construction of prognostic models by three machine learning methods after intersecting DEGs between angiogenesis and ferroptosis-related subgroups. In both the TCGA, ICGC, and GSE14520 datasets, the model exhibits high prediction efficiency based on the analysis of KM survival curves and ROC curves. Immunomodulatory genes analysis suggested that the model could be used to predict which patients are most likely to benefit from immunotherapy. Furthermore, the transcriptional expression levels of SLC10A1 in the validation experiment matched the outcomes derived from public datasets. Conclusions We identified a new angiogenesis and ferroptosis-related signature that might offer the molecular characteristic information needed for an efficient prognostic assessment and perhaps tailored treatment for HCC patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Guilian Kong
- Department of Nuclear Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
6
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Cui Q, Huang C, Liu JY, Zhang JT. Small Molecule Inhibitors Targeting the "Undruggable" Survivin: The Past, Present, and Future from a Medicinal Chemist's Perspective. J Med Chem 2023; 66:16515-16545. [PMID: 38092421 PMCID: PMC11588358 DOI: 10.1021/acs.jmedchem.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.
Collapse
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
8
|
Zhang B, Liu J, Li H, Huang B, Zhang B, Song B, Bao C, Liu Y, Wang Z. Integrated multi-omics identified the novel intratumor microbiome-derived subtypes and signature to predict the outcome, tumor microenvironment heterogeneity, and immunotherapy response for pancreatic cancer patients. Front Pharmacol 2023; 14:1244752. [PMID: 37745080 PMCID: PMC10512958 DOI: 10.3389/fphar.2023.1244752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background: The extremely malignant tumour known as pancreatic cancer (PC) lacks efficient prognostic markers and treatment strategies. The microbiome is crucial to how cancer develops and responds to treatment. Our study was conducted in order to better understand how PC patients' microbiomes influence their outcome, tumour microenvironment, and responsiveness to immunotherapy. Methods: We integrated transcriptome and microbiome data of PC and used univariable Cox regression and Kaplan-Meier method for screening the prognostic microbes. Then intratumor microbiome-derived subtypes were identified using consensus clustering. We utilized LASSO and Cox regression to build the microbe-related model for predicting the prognosis of PC, and utilized eight algorithms to assess the immune microenvironment feature. The OncoPredict package was utilized to predict drug treatment response. We utilized qRT-PCR to verify gene expression and single-cell analysis to reveal the composition of PC tumour microenvironment. Results: We obtained a total of 26 prognostic genera in PC. And PC samples were divided into two microbiome-related subtypes: Mcluster A and B. Compared with Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage and pathological grade. Immune analysis revealed that neutrophils, regulatory T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts, myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin. Moreover, we built a microbe-derived model to assess the outcome. The ROC curves showed that the microbe-related model has good predictive performance. The expression of LAMA3 and LIPH was markedly increased within pancreatic tumour tissues and was linked to advanced stage and poor prognosis. Single-cell analysis indicated that besides cancer cells, the tumour microenvironment of PC was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils. Conclusion: The intratumor microbiome-derived subtypes and signature in PC were first established, and our study provided novel perspectives on PC prognostic indicators and treatment options.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Han Li
- Department of Oncology, Southwest Medical University, Luzhou, China
| | - Bingqian Huang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bolin Zhang
- Department of Visceral, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Halle, Germany
| | - Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Xi’an, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Ye Q, Zhou X, Han F, Zheng C. Toad venom-derived bufadienolides and their therapeutic application in prostate cancers: Current status and future directions. Front Chem 2023; 11:1137547. [PMID: 37007051 PMCID: PMC10060886 DOI: 10.3389/fchem.2023.1137547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Specially, the high incidence rate and prevalence of drug resistance have rendered prostate cancer (PCa) a great threat to men’s health. Novel modalities with different structures or mechanisms are in urgent need to overcome these two challenges. Traditional Chinese medicine toad venom-derived agents (TVAs) have shown to possess versatile bioactivities in treating certain diseases including PCa. In this work, we attempted to have an overview of bufadienolides, the major bioactive components in TVAs, in the treatment of PCa in the past decade, including their derivatives developed by medicinal chemists to antagonize certain drawbacks of bufadienolides such as innate toxic effect to normal cells. Generally, bufadienolides can effectively induce apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by regulating certain microRNAs/long non-coding RNAs, or by modulating key pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles and challenges using TVAs will be discussed and possible solutions and future perspectives will also be presented in this review. Further in-depth studies are clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic effects and fully reveal their application. The information collected in this work may help evoke more effects in developing bufadienolides as therapeutic agents in PCa.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- *Correspondence: Caijuan Zheng,
| |
Collapse
|
10
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Cui Q, Wang C, Zeng L, Zhou QX, Fan YF. Editorial: Novel Small-Molecule Agents in Overcoming Multidrug Resistance in Cancers. Front Chem 2022; 10:921985. [PMID: 35601552 PMCID: PMC9114663 DOI: 10.3389/fchem.2022.921985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- *Correspondence: Qingbin Cui,
| | - Cong Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ying-Fang Fan
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Cui Q, Liang XL, Wang JQ, Zhang JY, Chen ZS. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem Pharmacol 2022; 201:115061. [PMID: 35489394 DOI: 10.1016/j.bcp.2022.115061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Drug resistance is the major obstacle that undermines effective cancer treatment. Recently, the application of gas signaling molecules, e.g., carbon monoxide (CO), in overcoming drug resistance has gained significant attention. Growing evidence showed that CO could inhibit mitochondria respiratory effect and glycolysis, two major ATP production pathways in cancer cells, and suppress angiogenesis and inhibit the activity of cystathionine β-synthase that is important in regulating cancer cells homeostasis, leading to synergistic effects when combined with cisplatin, doxorubicin, or phototherapy, etc. in certain resistant cancer cells. In the current review, we attempted to have a summary of these research conducted in the past decade using CO in treating drug resistant cancers, and have a detailed interpretation of the underlying mechanisms. The critical challenges will be discussed and potential solutions will also be provided. The information collected in this work will hopefully evoke more effects in using CO for the treatment of drug resistant cancers.
Collapse
Affiliation(s)
- Qingbin Cui
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Lan Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
13
|
Wu Z, Yang Y, Lei Z, Narayanan S, Wang J, Teng Q, Murakami M, Ambudkar SV, Ping F, Chen Z. ABCB1 limits the cytotoxic activity of TAK-243, an inhibitor of the ubiquitin-activating enzyme UBA1. FRONT BIOSCI-LANDMRK 2022; 27:5. [PMID: 35090310 PMCID: PMC10258814 DOI: 10.31083/j.fbl2701005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2025]
Abstract
BACKGROUND One of the major concerns of cancer therapy is the emergence of multidrug resistance (MDR). The MDR-associated ATP-binding cassette sub-family B member 1 (ABCB1) transporter is established to mediate resistance against numerous anticancer drugs. In this study, we demonstrated that the Ubiquitin-like modifier activating enzyme 1 (UBA1) inhibitor TAK-243 is transported by the ABCB1. METHODS MTT assay was performed to evaluate the cytotoxicity of TAK-243. Western blot was carried out to investigate if TAK-243 affect to ABCB1 protein expression in cancer cells. High Performance Liquid Chromatography (HPLC) and ATPase assay were carried out to confirm TAK-243 as an ABCB1 substrate. [3H]-paclitaxel accumulation assay was used to determine the MDR reversal effect of TAK-243. Computational docking analysis was performed to investigate the drug-transporter binding position. RESULTS The cytotoxicity profile showed that TAK-243 was less effective in ABCB1-overexpressing cells than in the parental cells, but pharmacological inhibition or knockout the gene of ABCB1 was able to reverse TAK-243 resistance. Furthermore, TAK-243 potently stimulated ABCB1 ATPase activity and the HPLC analysis revealed that TAK-243 accumulation was significantly reduced in ABCB1-overexpressing cells. Finally, the computational docking analysis indicates a high binding affinity between TAK-243 and human ABCB1 transporter. CONCLUSIONS Our in vitro data characterized TAK-243 as a substrate of ABCB1, which may predict limited anticancer effect of this compound in drug resistant tumors.
Collapse
Affiliation(s)
- Zhuoxun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Jingquan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Qiuxu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fengfeng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
14
|
Lei Z, Teng Q, Wu Z, Ping F, Song P, Wurpel JN, Chen Z. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm (Beijing) 2021; 2:765-777. [PMID: 34977876 PMCID: PMC8706751 DOI: 10.1002/mco2.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) has been extensively reported in colorectal cancer patients, which remains a major cause of chemotherapy failure. One of the critical mechanisms of MDR in colorectal cancer is the reduced intracellular drug level led by the upregulated expression of the ATP-binding cassette (ABC) transporters, particularly, ABCB1/P-gp. In this study, the CRISPR/Cas9 system was utilized to target ABCB1 in MDR colorectal cancer SW620/Ad300 cell line with ABCB1 overexpression. The results showed that stable knockout of ABCB1 gene by the CRISPR/Cas9 system was achieved in the MDR cancer cells. Reversal of MDR against ABCB1 chemotherapeutic drugs increased intracellular accumulation of [3H]-paclitaxel accumulation, and decreased drug efflux activity was observed in MDR SW620/Ad300 cells after ABCB1 gene knockout. Further tests using the 3D multicellular tumor spheroid model suggested that deficiency in ABCB1 restrained tumor spheroid growth and restore sensitivity to paclitaxel in MDR tumor spheroids. Overall, the CRISPR/Cas9 system targeting the ABCB1 gene can be an effective approach to overcome ABCB1-mediated MDR in colorectal cancer SW620/Ad300 cells.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Feng‐Feng Ping
- Department of Reproductive MedicineWuxi People's Hospital Affiliated to Nanjing Medical UniversityWu‐xiJiangsuP.R. China
| | - Peng Song
- Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM in Gansu ProvinceAffiliated Hospital of Gansu University of Chinese MedicineLanzhouP.R. China
| | - John N.D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
15
|
Nazempour N, Taleqani MH, Taheri N, Haji Ali Asgary Najafabadi AH, Shokrollahi A, Zamani A, Fattahi Dolatabadi N, Peymani M, Mahdevar M. The role of cell surface proteins gene expression in diagnosis, prognosis, and drug resistance of colorectal cancer: In silico analysis and validation. Exp Mol Pathol 2021; 123:104688. [PMID: 34592197 DOI: 10.1016/j.yexmp.2021.104688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Cell surface proteins (CSPs) are an important type of protein in different essential cell functions. This study aimed to distinguish overexpressed CSPs in colorectal cancer to investigate their biomarker, prognosis, and drug resistance potential. Raw data of three datasets including 1187 samples was downloaded then normalization and differential expression were performed. By the combination of the cancer genome atlas (TCGA) clinical data, survival analysis was carried out. Information of all CSPs was collected from cell surface protein atlas. The role of each candidate gene expression was investigated in drug resistance by CCEL and GDSC data from PharmacoGX. CRC samples including 30 tumor samples and adjacent normal were used to confirm data by RT-qPCR. Outcomes showed that 66 CSPs overexpressed in three datasets, and 146 CSPs expression associated with poor prognosis features in TCGA data that TIMP1 and QSOX2 can associate with poor patient survival independently. High-risk patients illustrated more fatality than low-risk patients based on the risk score calculated by the expression level of these genes. Receiver operating characteristic curve analysis showed that 39 CSPs as perfect biomarkers for diagnosis in CRC. Furthermore, QSOX2 and TIMP1 expression levels increased in tumor samples compared to adjacent normal samples. The Drug resistance analysis demonstrated ADAM12 and COL1A2 up-regulation among 66 overexpressed CSPs caused resistance to Venetoclax and Cyclophosphamide with a high estimate, respectively. Many CSPs are deregulated in CRC, and can be valuable candidates as biomarkers for diagnosis, prognosis, and drug resistance.
Collapse
Affiliation(s)
- Nasrin Nazempour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Mohammad Hossein Taleqani
- Department of Biology, Faculty of Science, University of Yazd, Yazd, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Navid Taheri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Alireza Shokrollahi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sharekord, Iran.
| | - Mohammad Mahdevar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
16
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
17
|
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J Control Release 2021; 336:16-39. [PMID: 34118336 DOI: 10.1016/j.jconrel.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Regardless of progress in therapy management which are developed for colon cancer (CC), it remains the third most common cause of mortality due to cancers around the world. Conventional medicines pose side effects due to untoward action on non-target cells. Their inability to deliver drugs to the affected regions of the colon locally, in a reproducible manner raises a concern towards the efficacy of therapy. In this regard, nanoparticles emerged as a promising drug delivery system due to their flexibility in designing, drug release modulation and cancer cell targeting. Not only are nanoparticles making their way into colon cancer research in the revolution of conventional onco-therapeutics, but they also offer promising scope in the development of colon cancer vaccines and theranostic tools. However, there are challenges with respect to drug delivery using nanoparticles, which may hamper the delivery of these novel carriers to the colon. The present review addresses recent advents in nanotechnology for colon-specific drug delivery (CDDS) which may help to overcome the existing challenges and intends to recognize futuristic potentials in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- N A Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India
| | - L Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India.
| |
Collapse
|
18
|
Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J 2021; 19:3269-3283. [PMID: 34141145 PMCID: PMC8193046 DOI: 10.1016/j.csbj.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA's prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.
Collapse
Key Words
- ABC transporter, ATP-binding cassette transporter
- ABCB1 (P-gp)
- ABCC1 (MRP1)
- ABCG2 (BCRP)
- ATP, adenosine-triphosphate
- Alzheimer's disease (AD)
- BCRP, breast cancer resistance protein (ABCG2)
- C@PA, computer-aided pattern analysis
- F1–5, pharmacophore features 1–5
- IC50, half-maximal inhibition concentration
- MDR, multidrug resistance
- MOE, molecular operating environment
- MRP1, multidrug resistance-associated protein 1 (ABCC1)
- Multidrug resistance (MDR)
- Multitarget fingerprints
- P-gp, P-glycoprotein (ABCB1)
- Pan-ABC inhibition / antagonism / blockage (PANABC)
- Pattern analysis (C@PA)
- SEM, standard error of the mean
- SMILES, simplified molecular input line entry specification
- Tc, Tanimotto coefficient
- Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist
- Under-studied ABC transporters (e.g., ABCA7)
- Well-studied ABC transporters
- calcein AM, calcein acetoxymethyl
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Builging, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
19
|
Wang M, Wu X, Yu L, Hu ZY, Li X, Meng X, Lv CT, Kim GY, Choi YH, Wang Z, Xu HW, Jin CY. LCT-3d Induces Oxidative Stress-Mediated Apoptosis by Upregulating Death Receptor 5 in Gastric Cancer Cells. Front Oncol 2021; 11:658608. [PMID: 33937072 PMCID: PMC8085419 DOI: 10.3389/fonc.2021.658608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is a global health problem. In this study, we investigate the role of a novel Indole derivative, named LCT-3d, in inhibiting the growth of gastric cancer cells by MTT assay. The Western blotting results showed that LCT-3d modulated the mitochondrial-related proteins and Cleaved-Caspases 3/9, to induce cell apoptosis. The up-regulation of Death receptor 5 (DR5) in MGC803 cells was observed with LCT-3d treatment. Knockdown of DR5 on MGC803 cells partially reversed the LCT-3d-induced mitochondrial apoptosis. The level of Reactive Oxygen Species (ROS) in MGC803 cells was increased with LCT-3d treatment and could be blocked with the pretreatment of the ROS inhibitor N-Acetylcysteine (NAC). The results demonstrate that the elevating ROS can up-regulate the expression of DR5, resulting in apoptosis via mitochondrial pathway. Although the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway served an important role in protecting gastric cancer cells against the injury of ROS, it can’t reverse LCT-3d-induced cell apoptosis. Taken together, our study showed that LCT-3d induced apoptosis via DR5-mediated mitochondrial apoptotic pathway in gastric cancer cells. LCT-3d could be a novel lead compound for development of anti-cancer activity in gastric cancer.
Collapse
Affiliation(s)
- Menglin Wang
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Wu
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lu Yu
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zi-Yun Hu
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaobo Li
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xia Meng
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Tao Lv
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Zhengya Wang
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Wei Xu
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Technology for Drug Preparation, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Chemosensitization of HT29 and HT29-5FU Cell Lines by a Combination of a Multi-Tyrosine Kinase Inhibitor and 5FU Downregulates ABCC1 and Inhibits PIK3CA in Light of Their Importance in Saudi Colorectal Cancer. Molecules 2021; 26:molecules26020334. [PMID: 33440689 PMCID: PMC7827067 DOI: 10.3390/molecules26020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the main causes of death worldwide and in Saudi Arabia. The toxicity and the development of resistance against 5 fluorouracil 5FU pose increasing therapeutic difficulties, which necessitates the development of personalized drugs and drug combinations. Objectives: First, to determine the most important kinases and kinase pathways, and the amount of ABC transporters and KRAS in samples taken from Saudi CRC patients. Second, to investigate the chemosensitizing effect of LY294002 and HAA2020 and their combinations with 5FU on HT29, HT29-5FU, HCT116, and HCT116-5FU CRC cells, their effect on the three ABC transporters, cell cycle, and apoptosis, in light of the important kinase pathways resulting from the first part of this study. Methods: The PamChip® peptide micro-array profiling was used to determine the level of kinase and targets in the Saudi CRC samples. Next, RT-PCR, MTT cytotoxicity, Western blotting, perturbation of cell cycle, annexin V, and immunofluorescence assays were used to investigate the effect on CRC, MRC5, and HUVEC cells. Results: The kinase activity profiling highlighted the importance of the PI3K/AKT, MAPK, and the growth factors pathways in the Saudi CRC samples. PIK3CA was the most overexpressed, and it was associated with increased level of mutated KRAS and the three ABC transporters, especially ABCC1 in the Saudi samples. Next, combining HAA2020 with 5FU exhibited the best synergistic and resistance-reversal effect in the four CRC cells, and the highest selectivity indices compared to MRC5 and HUVEC normal cells. Additionally, HAA2020 with 5FU exerted significant inhibition of ABCC1 in the four CRC cells, and inhibition of PIK3CA/AKT/MAPK7/ERK in HT29 and HT29-5FU cells. The combination also inhibited EGFR, increased the preG1/S cell cycle phases, apoptosis, and caspase 8 in HT29 cells, while it increased the G1 phase, p21/p27, and apoptosis in HT29-5FU cells. Conclusion: We have combined the PamChip kinase profiling of Saudi CRC samples with in vitro drug combination studies in four CRC cells, highlighting the importance of targeting PIK3CA and ABCC1 for Saudi CRC patients, especially given that the overexpression of PIK3CA mutations was previously linked with the lack of activity for the anti-EGFRs as first line treatment for CRC patients. The combination of HAA2020 and 5FU has selectively sensitized the four CRC cells to 5FU and could be further studied.
Collapse
|