1
|
Zdrojewski J, Nowak M, Nijakowski K, Jankowski J, Scribante A, Gallo S, Pascadopoli M, Surdacka A. Potential Immunohistochemical Biomarkers for Grading Oral Dysplasia: A Literature Review. Biomedicines 2024; 12:577. [PMID: 38540190 PMCID: PMC10967812 DOI: 10.3390/biomedicines12030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Oral cancer is a prevalent global health issue, with significant morbidity and mortality rates. Despite available preventive measures, it remains one of the most common cancers, emphasising the need for improved diagnostic and prognostic tools. This review focuses on oral potentially malignant disorders (OPMDs), precursors to oral cancer, specifically emphasising oral epithelial dysplasia (OED). The World Health Organisation (WHO) provides a three-tier grading system for OED, and recent updates have expanded the criteria to enhance diagnostic precision. In the prognostic evaluation of OED, histological grading is presently regarded as the gold standard; however, its subjectivity and unreliability in anticipating malignant transformation or recurrence pose notable limitations. The primary objective is to investigate whether specific immunohistochemical biomarkers can enhance OED grading assessment according to the WHO classification. Biomarkers exhibit significant potential for comprehensive cancer risk evaluation, early detection, diagnosis, prognosis, and treatment optimisation. Technological advancements, including sequencing and nanotechnology, have expanded detection capabilities. Some analysed biomarkers are most frequently chosen, such as p53, Ki-67, cadherins/catenins, and other proteins used to differentiate OED grades. However, further research is needed to confirm these findings and discover new potential biomarkers for precise dysplasia grading and minimally invasive assessment of the risk of malignant transformation.
Collapse
Affiliation(s)
- Jakub Zdrojewski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Monika Nowak
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Jakub Jankowski
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| |
Collapse
|
2
|
Hosseini V, Montazersaheb S, Hejazi N, Aslanabadi S, Mohammadinasr M, Hejazi MS. A snapshot of miRNAs in oral squamous cell carcinoma: Difference between cancer cells and corresponding normal cells. Pathol Res Pract 2023; 249:154731. [PMID: 37573620 DOI: 10.1016/j.prp.2023.154731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes the most aggressive tumors of the oral cavity and is one of the leading causes of cancer mortality worldwide. Although recent clinical treatment strategies have improved the survival rate, the outcome of OSCC patients still remains dismal because of the lack of efficient diagnostic and treatment tools. As one of the main actors of OSCC scenario, microRNAs (miRNAs) are involved in triggering, progression and metastasis through the regulation of various cancer-related signaling pathways. Identification followed by precise study of the biology and mechanism of action of miRNAs will greatly help to provide valuable insights regarding OSCC development and can be considered as an anti-OSCC target. In the current review, we have provided a focused summary of the latest published papers on the role of miRNAs in apoptosis, cell cycle, proliferation, EMT and metastasis of OSCC as well as the role of long noncoding RNAs in the modulation of miRNAs in OSCC.
Collapse
Affiliation(s)
- Vahid Hosseini
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Hejazi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sina Aslanabadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Mohammadinasr
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
4
|
Hellquist H, Agaimy A, Stenman G, Franchi A, Nadal A, Skalova A, Leivo I, Zidar N, Simpson RHW, Slootweg PJ, Hernandez-Prera JC, Ferlito A. Development of head and neck pathology in Europe. Virchows Arch 2022; 480:951-965. [PMID: 35028711 DOI: 10.1007/s00428-022-03275-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023]
Abstract
This review gives a brief history of the development of head and neck pathology in Europe from a humble beginning in the 1930s to the explosive activities the last 15 years. During the decades before the introduction of immunohistochemistry in the 1980s, head and neck pathology grew as a subspeciality in many European countries. In the late 1940s, the Institute of Laryngology and Otology with its own pathology laboratory was founded in London, and in 1964 the World Health Organization (WHO) International Reference Centre for the Histological Classification of Salivary Tumours was established at the Bland-Sutton Institute of Pathology, also in London. International collaboration, and very much so in Europe, led to the publication of the first WHO Classification of Salivary Gland Tumours in 1972. In the 1960s, a salivary gland register was organised in Hamburg and in Cologne the microlaryngoscopy was invented enabling microscopic endoscopic examination and rather shortly afterwards a carbon dioxide laser attached to the microscope became established and laryngeal lesions could be treated by laser vaporisation. During the last three decades, the use of immunohistochemistry supplemented with cytogenetic and refined molecular techniques has greatly facilitated the pathological diagnostics of head and neck lesions and has had a huge impact on research. Collaboration between different European centres has drastically increased partly due to establishment of scientific societies such as the Head and Neck Working Group (HNWG) within the European Society of Pathology and the International Head and Neck Scientific Group (IHNSG). A very large number of European pathologists have contributed to the 2nd, 3rd and 4th WHO books, and are involved in the upcoming 5th edition. Accredited educational meetings and courses are nowadays regularly arranged in Europe. Numerous textbooks on head and neck pathology have been written and edited by European pathologists. The increased collaboration has created larger series of tumours for research and new entities, mainly defined by their genetic abnormalities, are continuously emerging from Europe, particularly regarding salivary gland neoplasms and "undifferentiated" sinonasal tumours. These findings have led to a better and more precise classification and open the possibilities for new treatment strategies.
Collapse
Affiliation(s)
- Henrik Hellquist
- Department of Biomedical Sciences and Medicine, Epigenetics and Human Disease Group, Algarve Biomedical Centre (ABC), Algarve University, Campus de Gambelas, Ala Norte, 8005-139, Faro, Portugal.
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Göran Stenman
- Department of Pathology, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfons Nadal
- Department of Pathology, Hospital Clínic, Barcelona, Spain.,Department of Basic Clinical Practice, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Alena Skalova
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic.,Department of Pathology and Molecular Genetics, Bioptical Laboratory Ltd, Plzen, Czech Republic
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Pieter J Slootweg
- Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|