1
|
Torrens-Mas M, Collado-Solé A, Sola-Leyva A, Carrasco-Jiménez MP, Oliver J, Pons DG, Roca P, Sastre-Serra J. Mitochondrial Functionality Is Regulated by Alkylphospholipids in Human Colon Cancer Cells. BIOLOGY 2023; 12:1457. [PMID: 38132283 PMCID: PMC10740929 DOI: 10.3390/biology12121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Alkylphospholipids (APLs) have been studied as anticancer drugs that interfere with biological membranes without targeting DNA. Although their mechanism of action is not fully elucidated yet, it is known that they disrupt the intracellular trafficking of cholesterol and its metabolism. Here, we analyzed whether APLs could also interfere with mitochondrial function. For this purpose, we used HT29 colorectal cancer cells, derived from a primary tumor, and SW620 colorectal cancer cells, derived from a metastasis site. After treatment with the APLs miltefosine and perifosine, we analyzed various mitochondrial parameters, including mitochondrial mass, cardiolipin content, mitochondrial membrane potential, H2O2 production, the levels of oxidative phosphorylation (OXPHOS) complexes, metabolic enzymes activity, the oxygen consumption rate, and the levels of apoptosis and autophagy markers. APLs, especially perifosine, increased mitochondrial mass while OXPHOS complexes levels were decreased without affecting the total oxygen consumption rate. Additionally, we observed an increase in pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH) levels and a decrease in lactate dehydrogenase (LDH) activity, suggesting a metabolic rewiring induced by perifosine. These alterations led to higher mitochondrial membrane potential, which was potentiated by decreased uncoupling protein 2 (UCP2) levels and increased reactive oxygen species (ROS) production. Consequently, perifosine induced an imbalance in mitochondrial function, resulting in higher ROS production that ultimately impacted cellular viability.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
| | - Alejandro Collado-Solé
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
| | - Alberto Sola-Leyva
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, University of Granada, Av. Fuentenueva s/n, 18001 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
| | - María Paz Carrasco-Jiménez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, University of Granada, Av. Fuentenueva s/n, 18001 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.T.-M.); (J.O.); (D.G.P.); (J.S.-S.)
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Worsley CM, Veale RB, Mayne ES. The effect of acute acid exposure on immunomodulatory protein secretion, cell survival, and cell cycle progression in tumour cell lines. Cytokine 2023; 162:156118. [PMID: 36584453 DOI: 10.1016/j.cyto.2022.156118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Cancer develops when multiple systems fail to suppress uncontrolled cell proliferation. Breast cancers and oesophageal squamous cell carcinoma (OSCC) are common cancers prone to genetic instability. They typically occur in acidic microenvironments which impacts on cell proliferation, apoptosis, and their influence on surrounding cells to support tumour growth and immune evasion. This study aimed to evaluate the impact of the acidic tumour microenvironment on the production of pro-tumorigenic and immunomodulatory factors in cancer cell lines. Multiple factors that may mediate immune evasion were secreted including IL-6, IL-8, G-CSF, IP-10, GDF-15, Lipocalin-2, sICAM-1, and myoglobin. Others, such as VEGF, FGF, and EGF that are essential for tumour cell survival were also detected. Treatment with moderate acidity did not significantly affect secretion of most proteins, whereas very low pH did. Distinct differences in apoptosis were noted between the cell lines, with WHCO6 being better adapted to survive at moderate acid levels. Conditioned medium from acid-treated cells stimulated increased cell viability and proliferation in WHCO6, but increased cell death in MCF-7. This study highlights the importance of acidic tumour microenvironment in controlling apoptosis, cell proliferation, and immune evasion which may be different at different anatomical sites. Immunomodulatory molecules and growth factors provide therapeutic targets to improve the prognosis of individuals with cancer.
Collapse
Affiliation(s)
- Catherine M Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; National Health Laboratory Service, South Africa.
| | - Rob B Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S Mayne
- National Health Laboratory Service, South Africa; Department of Immunology Faculty of Health Sciences, University of the Witwatersrand, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
3
|
Stiborek M, Jindřichová L, Meliorisová S, Bednařík A, Prysiazhnyi V, Kroupa J, Houška P, Adamová B, Navrátilová J, Kanický V, Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal Chem 2022; 94:18114-18120. [PMID: 36514811 DOI: 10.1021/acs.analchem.2c05216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a new technique for the digital mapping of biomarkers in tissues based on desorption and counting intact gold nanoparticle (Au NP) tags using infrared laser ablation single-particle inductively coupled plasma mass spectrometry (IR LA SP ICP MS). In contrast to conventional UV laser ablation, Au NPs are not disintegrated during the desorption process due to their low absorption at 2940 nm. A mass spectrometer detects up to 83% of Au NPs. The technique is demonstrated on mapping a proliferation marker, nuclear protein Ki-67, in three-dimensional (3D) aggregates of colorectal carcinoma cells, and the results are compared with confocal fluorescence microscopy and UV LA ICP MS. Precise counting of 20 nm Au NPs with a single-particle detection limit in each pixel by the new approach generates sharp distribution maps of a specific biomarker in the tissue. Advantageously, the desorption of Au NPs from regions outside the tissue is strongly suppressed. The developed methodology promises multiplex mapping of low-abundant biomarkers in numerous biological and medical applications using multielemental mass spectrometers.
Collapse
Affiliation(s)
- Marek Stiborek
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Jindřichová
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislava Meliorisová
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiří Kroupa
- Research Center of Automatic Manipulation, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
| | - Pavel Houška
- Research Center of Automatic Manipulation, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
| | - Barbora Adamová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 602 00 Brno, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Adamová B, Říhová K, Pokludová J, Beneš P, Šmarda J, Navrátilová J. Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells. J Cell Mol Med 2022; 27:76-88. [PMID: 36523175 PMCID: PMC9806293 DOI: 10.1111/jcmm.17636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Barbora Adamová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Říhová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
5
|
Disulfiram increases the efficacy of 5-fluorouracil in organotypic cultures of colorectal carcinoma. Biomed Pharmacother 2022; 153:113465. [DOI: 10.1016/j.biopha.2022.113465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
|
6
|
DDR1 promotes LoVo cell proliferation by regulating energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2022; 54:615-624. [PMID: 35593476 PMCID: PMC9828011 DOI: 10.3724/abbs.2022038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cellular energy metabolism dysregulation is associated with colorectal cancer (CRC) development and progression. Discoidin domain receptor 1a (DDR1a), one of the five DDR1 isoforms, is closely related to cell proliferation, invasion, and apoptosis in various tumors. Whether it participates in cellular metabolic reprogramming and regulates CRC initiation and progression remains unclear. In this study, we compared the expression of DDR1 in CRC tissues and adjacent tissues from 126 postoperative CRC samples. Moreover, lentivirus-mediated DDR1a overexpression and knockdown were performed in LoVo cells, and cell viability and proliferation were determined by CCK-8 and BrdU assays, respectively. Oxygen consumption rate, extracellular acidification rate, and lactate production were used to determine the effect of DDR1a on metabolic reprogramming. Clinically, CRC patients with high DDR1 expression had poor differentiation and were at an advanced TNM stage. DDR1a promoted LoVo cell proliferation, mitochondrial function, and extracellular acidification. Moreover, DDR1a knockdown inhibited intracellular lactic acid production in LoVo cells, while a pyruvate kinase inhibitor (diamide, 200 μM) significantly reversed this progression. Taken together, our results reveal that DDR1 plays a crucial role in maintaining intracellular environment homeostasis through metabolic reprogramming.
Collapse
|
7
|
Vesela B, Killinger M, Rihova K, Benes P, Svandová E, Kratochvilová A, Trcka F, Kleparnik K, Matalova E. Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways. Front Cell Dev Biol 2022; 10:794407. [PMID: 35372363 PMCID: PMC8964645 DOI: 10.3389/fcell.2022.794407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Caspase-8 is the key component of the receptor-mediated (extrinsic) apoptotic pathway. Immunological localization of active caspase-8 showed its presence in osteoblasts, including non-apoptotic ones. Further in vivo exploration of caspase-8 functions in the bone is hindered by the fact that the caspase-8 knock-out is lethal prenatally. Examinations were thus performed using individual cell populations in vitro. In this study, caspase-8 was eliminated by the CRISPR/cas9 technology in MC3T3-E1 cells, the most common in vitro model of osteoblastic populations. The aim of the work was to specify the consequences of caspase-8 deficiency on non-apoptotic pathways. The impact on the osteogenic gene expression of the osteoblastic cells along with alterations in proliferation, caspase cascades and rapamycin induced autophagy response were evaluated. Osteogenic differentiation of caspase-8 deficient cells was inhibited as these cells displayed a decreased level of mineralization and lower activity of alkaline phosphatase. Among affected osteogenic genes, based on the PCR Array, major changes were observed for Ctsk, as down-regulated, and Gdf10, as up-regulated. Other significantly down-regulated genes included those coding osteocalcin, bone morphogenetic proteins (-3, -4 and -7), collagens (-1a1, -14a1) or Phex. The formation of autophagosomes was not altered in rapamycin-treated caspase-8 deficient cells, but expression of some autophagy-related genes, including Tnfsf10, Cxcr4, Dapk1 and Igf1, was significantly downregulated. These data provide new insight into the effects of caspase-8 on non-apoptotic osteogenic pathways.
Collapse
Affiliation(s)
- Barbora Vesela
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Barbora Vesela,
| | - Michael Killinger
- Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czechia
| | - Kamila Rihova
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Petr Benes
- Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Eva Svandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Adela Kratochvilová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Trcka
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Karel Kleparnik
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czechia
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
8
|
Alexander Harrison J, Pruška A, Oganesyan I, Bittner P, Zenobi R. Temperature-Controlled Electrospray Ionization: Recent Progress and Applications. Chemistry 2021; 27:18015-18028. [PMID: 34632657 PMCID: PMC9298390 DOI: 10.1002/chem.202102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Native electrospray ionization (ESI) and nanoelectrospray ionization (nESI) allow researchers to analyze intact biomolecules and their complexes by mass spectrometry (MS). The data acquired using these soft ionization techniques provide a snapshot of a given biomolecules structure in solution. Over the last thirty years, several nESI and ESI sources capable of controlling spray solution temperature have been developed. These sources can be used to elucidate the thermodynamics of a given analyte, as well as provide structural information that cannot be readily obtained by other, more commonly used techniques. This review highlights how the field of temperature-controlled mass spectrometry has developed.
Collapse
Affiliation(s)
| | - Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Irina Oganesyan
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Philipp Bittner
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|