1
|
Hao C, Chen P, Setrerrahmane S, Xu H. A peptide-salinomycin conjugate with a bystander effect reduces the stemness characteristics of ovarian cancer cells and enhances drug sensitivity. Eur J Med Chem 2024; 276:116701. [PMID: 39067438 DOI: 10.1016/j.ejmech.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.
Collapse
Affiliation(s)
- Chaowei Hao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Rajaura S, Bhardwaj N, Singh A, Babu R, Gupta N, Ahmed MZ. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol 2024; 130:108724. [PMID: 39322090 DOI: 10.1016/j.reprotox.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Bisphenol A (BPA) belongs to the endocrine disruptor chemicals (EDCs) causing various reproductive disorders in females. We analysed the toxic effects of BPA in the uterus and ovaries. The BPA was administered orally with the repeated low dose (LD, 1 mg/kg) and high dose (HD, 5 mg/kg) of body weight on alternate days for 4 months via oral gavage to Swiss mice. BPA administration decreases body weight, ovarian weight and size at LD, but increases ovarian weight and size at HD. The uterus weight, length, and diameter were increased in both the treated groups. The histopathological data show decreased ovarian follicle size, epithelial hyperplasia, and lymphocytic infiltration in the ovary. The BPA-treated uterus shows increased vascularization, atrophied endometrium and myometrium, and endometrial hyperplasia (EH) with aberrant glandular growth. The cancer stem cells (CSCs) in the ovaries were identified based on staining with anti-mouse CD44 and anti-mouse CD133 antibodies and analysed by flow cytometry. Three different populations of ovarian CSCs: CD44+CD133-, CD44+CD133+, and CD44-CD133+, can be recognised based on the intensity of these receptors. CD44+CD133- and CD44+CD133+ cell percentages were increased in BPA-treated groups. CD44-CD133+ were increased in LD but decreased in HD. The BPA administration also induces ROS production, which decreases the expression of antioxidant genes Superoxide dismutase 1 (SOD1), Superoxide dismutase 2 (SOD2), Catalase (CAT), Glutathione peroxidase 1 (GPX1), and Forkhead box O3 (FOXO3) in ovarian cells. In conclusion, BPA exposure induced an inflammatory response, increased CSC proportions, induced ROS, and decreased antioxidant responses in the ovaries.
Collapse
Affiliation(s)
- Sumit Rajaura
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India.
| | - Ashutosh Singh
- Department of Biochemistry, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, New Delhi, India
| | - Neelujain Gupta
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Jiang X, Chen N, Wei Q, Luo X, Liu X, Xie L, Yi P, Xu J. Single-cell RNA sequencing and cell-cell communication analysis reveal tumor microenvironment associated with chemotherapy responsiveness in ovarian cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03655-6. [PMID: 39122983 DOI: 10.1007/s12094-024-03655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND To investigate the impact of the tumor microenvironment (TME) on the responsiveness to chemotherapy in ovarian cancer (OV). METHODS We integrated single cell RNA-seq datasets of OV containing chemo-response information, and characterize their clusters based on different TME sections. We focus on analyzing cell-cell communication to elaborate on the mechanisms by which different components of the TME directly influence the chemo-response of tumor cells. RESULTS scRNA-seq datasets were annotated according to specific markers for different cell types. Differential analysis of malignant epithelial cells revealed that chemoresistance was associated with the TME. Notably, distinct TME components exhibited varying effects on chemoresistance. Enriched SPP1+ tumor-associated macrophages in chemo-resistant patients could promote chemoresistance through SPP1 binding to CD44 on tumor cells. Additionally, the overexpression of THBS2 in stromal cells could promote chemoresistance through binding with CD47 on tumor cells. In contrast, GZMA in the lymphocytes could downregulate the expression of PARD3 through direct interaction with PARD3, thereby attenuating chemoresistance in tumor cells. CONCLUSION Our study indicates that the non-tumor cell components of the TME (e.g. SPP1+ TAMs, stromal cells and lymphocytes) can directly impact the chemo-response of OV and targeting the TME was potentially crucial in chemotherapy of OV.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qinglv Wei
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
4
|
Zeng Q, He J, Chen X, Yuan Q, Yin L, Liang Y, Zu X, Shen Y. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors. Biomed Pharmacother 2024; 176:116932. [PMID: 38870631 DOI: 10.1016/j.biopha.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Hematopoietic cell kinase (Hck), a non-receptor tyrosine kinase belonging to the Src kinase family, is intricately linked to the pathogenesis of numerous human diseases, with a particularly pronounced association with cancer. Hck not only directly impacts the proliferation, migration, and apoptosis of cancer cells but also interacts with JAK/STAT, MEK/ERK, PI3K/AKT, CXCL12/CXCR4, and other pathways. Hck also influences the tumor microenvironment to facilitate the onset and progression of cancer. This paper delves into the functional role and regulatory mechanisms of Hck in various solid tumors. Additionally, it explores the implications of Hck in hematological malignancies. The review culminates with a summary of the current research status of Hck inhibitors, the majority of which are in the pre-clinical phase of investigation. Notably, these inhibitors are predominantly utilized in the therapeutic management of leukemia, with their combinatorial potential indicating promising avenues for future research. In conclusion, this review underscores the significance of the mechanism of Hck in solid tumors. This insight is crucial for comprehending the current research trends regarding Hck: targeted therapy against Hck shows great promise in both diagnosis and treatment of malignant tumors. Further investigation into the role of Hck in cancer, coupled with the development of specific inhibitors, has the potential to revolutionize approaches to cancer treatment.
Collapse
Affiliation(s)
- Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
6
|
Martincuks A, Zhang C, Austria T, Li YJ, Huang R, Lugo Santiago N, Kohut A, Zhao Q, Borrero RM, Shen B, Cristea M, Wang EW, Song M, Rodriguez-Rodriguez L, Yu H. Targeting PARG induces tumor cell growth inhibition and antitumor immune response by reducing phosphorylated STAT3 in ovarian cancer. J Immunother Cancer 2024; 12:e007716. [PMID: 38580335 PMCID: PMC11002370 DOI: 10.1136/jitc-2023-007716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecological malignancy, with limited treatment options after failure of standard therapies. Despite the potential of poly(ADP-ribose) polymerase inhibitors in treating DNA damage response (DDR)-deficient ovarian cancer, the development of resistance and immunosuppression limit their efficacy, necessitating alternative therapeutic strategies. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) represent a novel class of inhibitors that are currently being assessed in preclinical and clinical studies for cancer treatment. METHODS By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1-null ID8 ovarian cancer cell lines, as well as in immune cells. We examined PARG inhibition-induced effects on STAT3 phosphorylation, nuclear localization, target gene expression, and antitumor immune responses in vitro, in patient-derived tumor organoids, and in an immunocompetent Brca1-null ID8 ovarian mouse tumor model that mirrors DDR-deficient human high-grade serous ovarian cancer. We also tested the effects of overexpressing a constitutively activated STAT3 mutant on COH34-induced tumor cell growth inhibition. RESULTS Our findings show that PARG inhibition downregulates STAT3 activity through dephosphorylation in ovarian cancer cells. Importantly, overexpression of a constitutively activated STAT3 mutant in tumor cells attenuates PARG inhibitor-induced growth inhibition. Additionally, PARG inhibition reduces STAT3 phosphorylation in immune cells, leading to the activation of antitumor immune responses, shown in immune cells cocultured with ovarian cancer patient tumor-derived organoids and in immune-competent mice-bearing mouse ovarian tumors. CONCLUSIONS We have identified a novel antitumor mechanism underlying PARG inhibition beyond its primary antitumor effects through blocking DDR in ovarian cancer. Furthermore, targeting PARG activates antitumor immune responses, thereby potentially increasing response rates to immunotherapy in patients with ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Theresa Austria
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Yi-Jia Li
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Rui Huang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nicole Lugo Santiago
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Adrian Kohut
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, USA
| | - Rosemarie Martinez Borrero
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Edward W Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Mihae Song
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | | | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
7
|
Jin Y, Wang C, Zhang B, Sun Y, Ji J, Cai Q, Jiang J, Zhang Z, Zhao L, Yu B, Zhang J. Blocking EGR1/TGF-β1 and CD44s/STAT3 Crosstalk Inhibits Peritoneal Metastasis of Gastric Cancer. Int J Biol Sci 2024; 20:1314-1331. [PMID: 38385088 PMCID: PMC10878142 DOI: 10.7150/ijbs.90598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-β1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-β1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-β1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-β1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihao Zhang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, 201203, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| |
Collapse
|
8
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
9
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
10
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
11
|
Khella CA, Franciosa L, Rodirguez-Rodriguez L, Rajkarnikar R, Mythreye K, Gatza ML. HCK Promotes High-Grade Serous Ovarian Cancer Tumorigenesis through CD44 and NOTCH3 Signaling. Mol Cancer Res 2023; 21:1037-1049. [PMID: 37342066 DOI: 10.1158/1541-7786.mcr-22-0496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly aggressive and lethal subtype of ovarian cancer. While most patients initially respond to standard-of-care treatment, the majority will eventually relapse and succumb to their disease. Despite significant advances in our understanding of this disease, the mechanisms that govern the distinctions between HGSOC with good and poor prognosis remain unclear. In this study, we implemented a proteogenomic approach to analyze gene expression, proteomic and phosphoproteomic profiles of HGSOC tumor samples to identify molecular pathways that distinguish HGSOC tumors relative to clinical outcome. Our analyses identify significant upregulation of hematopoietic cell kinase (HCK) expression and signaling in poor prognostic HGSOC patient samples. Analyses of independent gene expression datasets and IHC of patient samples confirmed increased HCK signaling in tumors relative to normal fallopian or ovarian samples and demonstrated aberrant expression in tumor epithelial cells. Consistent with the association between HCK expression and tumor aggressiveness in patient samples, in vitro phenotypic studies showed that HCK can, in part, promote cell proliferation, colony formation, and invasive capacity of cell lines. Mechanistically, HCK mediates these phenotypes, partly through CD44 and NOTCH3-dependent signaling, and inhibiting CD44 or NOTCH3 activity, either genetically or through gamma-secretase inhibitors, can revert HCK-driven phenotypes. IMPLICATIONS Collectively, these studies establish that HCK acts as an oncogenic driver of HGSOC through aberrant activation of CD44 and NOTCH3 signaling and identifies this network as a potential therapeutic opportunity in a subset of patients with aggressive and recurrent HGSOC.
Collapse
Affiliation(s)
- Christen A Khella
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- School of Graduate Studies, Rutgers University, New Brunswick, New Jersey
| | | | | | - Resha Rajkarnikar
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Michael L Gatza
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
12
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
13
|
Iżycka N, Zaborowski MP, Ciecierski Ł, Jaz K, Szubert S, Miedziarek C, Rezler M, Piątek-Bajan K, Synakiewicz A, Jankowska A, Figlerowicz M, Sterzyńska K, Nowak-Markwitz E. Cancer Stem Cell Markers-Clinical Relevance and Prognostic Value in High-Grade Serous Ovarian Cancer (HGSOC) Based on The Cancer Genome Atlas Analysis. Int J Mol Sci 2023; 24:12746. [PMID: 37628927 PMCID: PMC10454196 DOI: 10.3390/ijms241612746] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer stem cells (CSCs) may contribute to an increased risk of recurrence in ovarian cancer (OC). Further research is needed to identify associations between CSC markers and OC patients' clinical outcomes with greater certainty. If they prove to be correct, in the future, the CSC markers can be used to help predict survival and indicate new therapeutic targets. This study aimed to determine the CSC markers at mRNA and protein levels and their association with clinical presentation, outcome, and risk of recurrence in HGSOC (High-Grade Serous Ovarian Cancer). TCGA (The Cancer Genome Atlas) database with 558 ovarian cancer tumor samples was used for the evaluation of 13 CSC markers (ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1, PROM1, PTTG1, ROR1, SOX9, and THY1). Data on mRNA and protein levels assessed by microarray and mass spectrometry were retrieved from TCGA. Models to predict chemotherapy response and survival were built using multiple variables, including epidemiological data, expression levels, and machine learning methodology. ALDH1A1 and LGR5 mRNA expressions indicated a higher platinum sensitivity (p = 3.50 × 10-3; p = 0.01, respectively). POU5F1 mRNA expression marked platinum-resistant tumors (p = 9.43 × 10-3). CD44 and EPCAM mRNA expression correlated with longer overall survival (OS) (p = 0.043; p = 0.039, respectively). THY1 mRNA and protein levels were associated with worse OS (p = 0.019; p = 0.015, respectively). Disease-free survival (DFS) was positively affected by EPCAM (p = 0.004), LGR5 (p = 0.018), and CD44 (p = 0.012). In the multivariate model based on CSC marker expression, the high-risk group had 9.1 months longer median overall survival than the low-risk group (p < 0.001). ALDH1A1, CD44, EPCAM, LGR5, POU5F1, and THY1 levels in OC may be used as prognostic factors for the primary outcome and help predict the treatment response.
Collapse
Affiliation(s)
- Natalia Iżycka
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Mikołaj Piotr Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Łukasz Ciecierski
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Kamila Jaz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Sebastian Szubert
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Cezary Miedziarek
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Marta Rezler
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Kinga Piątek-Bajan
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Aneta Synakiewicz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D St., 60-806 Poznan, Poland;
| | - Marek Figlerowicz
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 61-781 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| |
Collapse
|
14
|
Ji H, Kong L, Wang Y, Hou Z, Kong W, Qi J, Jin Y. CD44 expression is correlated with osteosarcoma cell progression and immune infiltration and affects the Wnt/β-catenin signaling pathway. J Bone Oncol 2023; 41:100487. [PMID: 37287706 PMCID: PMC10242553 DOI: 10.1016/j.jbo.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
CD44 is associated with a variety of human diseases and plays a potential role in tumorigenesis, however, the mechanism of its role in osteosarcoma remains unclear. We analyzed the expression of CD44 in the Cancer Genome Atlas (TCGA) and genotype-tissue expression pan-cancer data and found that it was highly expressed in most tumors, including sarcoma. The expression of CD44 in osteosarcoma cell lines was higher than that in human osteoblast cell line in the results of the Western blot and Immunohistochemical staining assay. The results of colony formation assay and CCK 8 showed that CD44 improved the proliferation capacity of osteosarcoma cells, transwell assay and wound healing assay showed that CD44 improved the migration capacity of osteosarcoma cells. Further studies revealed that CD44 exerts its influence on the biological behavior of osteosarcoma cells through the Wnt/β-catenin signaling pathway. Since CD44 may be involved in the immune response, we analyzed the correlation between CD44 expression and immune cell infiltration in TCGA database using the previous cluster analyzer R software package, TIMER2.0 database and, GEPIA2 database, and found its involvement in the immune infiltration of osteosarcoma. Therefore, we believe that CD44 could be a potential target for the treatment of osteosarcoma patients and may be a candidate biomarker for immune infiltration-related prognosis.
Collapse
Affiliation(s)
- Hairu Ji
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Yu Wang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhiping Hou
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Wei Kong
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Jiemin Qi
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| |
Collapse
|
15
|
Zakaria NH, Saad N, Che Abdullah CA, Mohd Esa N. The Antiproliferative Effect of Chloroform Fraction of Eleutherine bulbosa (Mill.) Urb. on 2D- and 3D-Human Lung Cancer Cells (A549) Model. Pharmaceuticals (Basel) 2023; 16:936. [PMID: 37513848 PMCID: PMC10384492 DOI: 10.3390/ph16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Since lung cancer is the leading cause of cancer-related death worldwide, research is being conducted to discover anticancer agents as its treatment. Eleutherine bulbosa, a Dayak folklore medicine, exhibited anticancer effects against several cancer cells; however, its anticancer potency against lung cancer cells has not been explored yet. This study aims to determine the anticancer potency of E. bulbosa bulbs against lung cancer cells (A549) using 2D and 3D culture models, as well as determine its active compounds using gas chromatography-mass spectrometry (GC-MS) analysis. Three fractions of E. bulbosa bulbs, namely chloroform, n-hexane, and ethyl acetate, were tested for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and CellTiter-Glo. The antiproliferative effects of the most cytotoxic fraction against the 2D culture model were determined by a clonogenic survival assay and propidium iodide/Hoechst 33342 double staining, whereas the effects against the 3D culture model were determined by microscopy, flow cytometry, and gene expression analysis. The chloroform fraction is the most cytotoxic against A549 cells than other fractions, and it inhibited colony formation and induced apoptosis of A549 cells. The chloroform fraction also inhibited the growth of the A549 spheroid by suppressing the spheroid size, inducing apoptosis, reducing the proportion of CD44 lung cancer stem cells, causing arrest at the S phase of the cell cycle, and suppressing the expression of the SOX2 and MYC genes. Furthermore, the GC-MS analysis detected 20 active compounds in the chloroform fraction, including the major compounds of eleutherine and isoeleutherine. In conclusion, the chloroform fraction of E. bulbosa bulbs exhibit its antiproliferative effect on 2D and 3D culture models of A549 cells, suggesting it could be a lung cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nur Hannan Zakaria
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Che Azurahanim Che Abdullah
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Yuan K, Zhao S, Ye B, Wang Q, Liu Y, Zhang P, Xie J, Chi H, Chen Y, Cheng C, Liu J. A novel T-cell exhaustion-related feature can accurately predict the prognosis of OC patients. Front Pharmacol 2023; 14:1192777. [PMID: 37284314 PMCID: PMC10239809 DOI: 10.3389/fphar.2023.1192777] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
The phenomenon of T Cell exhaustion (TEX) entails a progressive deterioration in the functionality of T cells within the immune system during prolonged conflicts with chronic infections or tumors. In the context of ovarian cancer immunotherapy, the development, and outcome of treatment are closely linked to T-cell exhaustion. Hence, gaining an in-depth understanding of the features of TEX within the immune microenvironment of ovarian cancer is of paramount importance for the management of OC patients. To this end, we leveraged single-cell RNA data from OC to perform clustering and identify T-cell marker genes utilizing the Unified Modal Approximation and Projection (UMAP) approach. Through GSVA and WGCNA in bulk RNA-seq data, we identified 185 TEX-related genes (TEXRGs). Subsequently, we transformed ten machine learning algorithms into 80 combinations and selected the most optimal one to construct TEX-related prognostic features (TEXRPS) based on the mean C-index of the three OC cohorts. In addition, we explored the disparities in clinicopathological features, mutational status, immune cell infiltration, and immunotherapy efficacy between the high-risk (HR) and low-risk (LR) groups. Upon the integration of clinicopathological features, TEXRPS displayed robust predictive power. Notably, patients in the LR group exhibited a superior prognosis, higher tumor mutational load (TMB), greater immune cell infiltration abundance, and enhanced sensitivity to immunotherapy. Lastly, we verified the differential expression of the model gene CD44 using qRT-PCR. In conclusion, our study offers a valuable tool to guide clinical management and targeted therapy of OC.
Collapse
Affiliation(s)
- Kemiao Yuan
- Department of Oncology, Traditional Chinese Medicine Hospital of Wuxi, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuan Liu
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaheng Xie
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- Southwest Medical University, Luzhou, China
| | - Yu Chen
- Wuxi Maternal and Child Health Care Hospital, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
18
|
Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, Alsina-Sanchis E, Bohnenberger H, Fernandez-Florido E, Mülfarth R, Vacca M, Gerwing J, Conradi LC, Ströbel P, Trumpp A, Mogler C, Fischer A, Rodriguez-Vita J. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun 2023; 14:2353. [PMID: 37095087 PMCID: PMC10126109 DOI: 10.1038/s41467-023-38064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
Collapse
Affiliation(s)
- Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Vaquero-Siguero
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Elena Fernandez-Florido
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Margherita Vacca
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
19
|
Seo J, Lee DE, Kim SM, Kim E, Kim JK. Licochalcone A Exerts Anti-Cancer Activity by Inhibiting STAT3 in SKOV3 Human Ovarian Cancer Cells. Biomedicines 2023; 11:biomedicines11051264. [PMID: 37238935 DOI: 10.3390/biomedicines11051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licochalcone A (LicA), a major active component of licorice, has been reported to exhibit various pharmacological actions. The purpose of this study was to investigate the anticancer activity of LicA and detail its molecular mechanisms against ovarian cancer. SKOV3 human ovarian cancer cells were used in this study. Cell viability was measured using a cell counting kit-8 assay. The percentages of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse flow cytometry. The expression levels of proteins regulating cell apoptosis, cell cycle, and the signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using Western blotting analysis. The results indicated that LicA treatment inhibited the cell viability of SKOV3 cells and induced G2/M phase arrest. Furthermore, LicA induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspases and cytoplasmic cytochrome c. Additionally, LicA caused a dramatic decrease in STAT3 protein levels, but not mRNA levels, in SKOV3 cells. Treatment with LicA also reduced phosphorylation of the mammalian target of rapamycin and eukaryotic translation initiation factor 4E-binding protein in SKOV3 cells. The anti-cancer effects of LicA on SKOV3 cells might be mediated by reduced STAT3 translation and activation.
Collapse
Affiliation(s)
- Jeonghyeon Seo
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Da Eun Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Seong Mi Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| |
Collapse
|
20
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
21
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
22
|
Kong S, Moharil P, Handly‐Santana A, Boehnke N, Panayiotou R, Gomerdinger V, Covarrubias G, Pires IS, Zervantonakis I, Brugge J, Hammond PT. Synergistic combination therapy delivered via layer-by-layer nanoparticles induces solid tumor regression of ovarian cancer. Bioeng Transl Med 2023; 8:e10429. [PMID: 36925689 PMCID: PMC10013771 DOI: 10.1002/btm2.10429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The majority of patients with high grade serous ovarian cancer (HGSOC) develop recurrent disease and chemotherapy resistance. To identify drug combinations that would be effective in treatment of chemotherapy resistant disease, we examined the efficacy of drug combinations that target the three antiapoptotic proteins most commonly expressed in HGSOC-BCL2, BCL-XL, and MCL1. Co-inhibition of BCL2 and BCL-XL (ABT-263) with inhibition of MCL1 (S63845) induces potent synergistic cytotoxicity in multiple HGSOC models. Since this drug combination is predicted to be toxic to patients due to the known clinical morbidities of each drug, we developed layer-by-layer nanoparticles (LbL NPs) that co-encapsulate these inhibitors in order to target HGSOC tumor cells and reduce systemic toxicities. We show that the LbL NPs can be designed to have high association with specific ovarian tumor cell types targeted in these studies, thus enabling a more selective uptake when delivered via intraperitoneal injection. Treatment with these LbL NPs displayed better potency than free drugs in vitro and resulted in near-complete elimination of solid tumor metastases of ovarian cancer xenografts. Thus, these results support the exploration of LbL NPs as a strategy to deliver potent drug combinations to recurrent HGSOC. While these findings are described for co-encapsulation of a BCL2/XL and a MCL1 inhibitor, the modular nature of LbL assembly provides flexibility in the range of therapies that can be incorporated, making LbL NPs an adaptable vehicle for delivery of additional combinations of pathway inhibitors and other oncology drugs.
Collapse
Affiliation(s)
- Stephanie Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Pearl Moharil
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | | | - Natalie Boehnke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Richard Panayiotou
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | - Victoria Gomerdinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Ivan S. Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Ioannis Zervantonakis
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUnited States
| | - Joan Brugge
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| |
Collapse
|
23
|
Jing B, Guo F, An R, Gao Y, Li Y, Xie Y, Wang J, Chen Y, Li H, Gao T, Jin Q, Zhang L, Xie M. Apoptotic tumor cell-derived microparticles loading Napabucasin inhibit CSCs and synergistic immune therapy. J Nanobiotechnology 2023; 21:37. [PMID: 36732759 PMCID: PMC9893668 DOI: 10.1186/s12951-023-01792-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are crucial for the growth, metastasis, drug resistance, recurrence, and spread of tumors. Napabucasin (NAP) could effectively inhibit CSC, but its mechanism has not been fully explained. Additionally, NAP also has the drawbacks of poor water solubility and low utilization. Therefore, this study not only elaborated the new mechanism of NAP inhibiting CSCs, but also built NAP-loaded nanoprobes using apoptotic tumor-derived microparticles (TMPs) as carriers to combine diagnose and treat of colon cancer and lessen the adverse effects of NAP. RESULTS The study discovered a new mechanism for NAP inhibiting tumors. NAP, in addition to inhibiting STAT3, may also inhibit STAT1, thereby inhibiting the expression of CD44, and the stemness of colon cancer. N3-TMPs@NAP was successfully synthesized, and it possessed a lipid bilayer with a particle size of 220.13 ± 4.52 nm, as well as strong tumor binding ability and anti-tumor effect in vitro. In static PET/CT imaging studies, the tumor was clearly visible and showed higher uptake after N3-TMPs@NAP injection than after oral administration. The average tumor volume and weight of the N3-TMPs@NAP group on day 14 of the treatment studies were computed to be 270.55 ± 107.59 mm3 and 0.30 ± 0.12 g, respectively. These values were significantly lower than those of the other groups. Additionally, N3-TMPs@NAP might prevent colon cancer from spreading to the liver. Furthermore, due to TMPs' stimulation of innate immunity, N3-TMPs@NAP might stimulate anti-tumor. CONCLUSIONS As a combined diagnostic and therapeutic nanoprobe, N3-TMPs@NAP could successfully conduct PET/CT imaging, suppress CSCs, and synergistically stimulate anticancer immune responses. Additionally, this nanoprobe might someday be employed in clinical situations because TMPs for it can be produced from human tissue and NAP has FDA approval.
Collapse
Affiliation(s)
- Boping Jing
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Feng Guo
- grid.33199.310000 0004 0368 7223Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui An
- grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yu Gao
- grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yuman Li
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Yuji Xie
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Jing Wang
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Yihan Chen
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - He Li
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Tang Gao
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Qiaofeng Jin
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Li Zhang
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518607 China
| | - Mingxing Xie
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518607 China
| |
Collapse
|
24
|
Kamal IM, Temerik DF, Yassin EH, Mosad E, A H, Hussien MT. Prognostic Outcome of Mesenchymal Transition Biomarkers in Correlation with EGFR Expression in Epithelial Ovarian Carcinoma Patients. Asian Pac J Cancer Prev 2022; 23:4213-4225. [PMID: 36580004 PMCID: PMC9971466 DOI: 10.31557/apjcp.2022.23.12.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND CD44 is an epithelial-mesenchymal transition (EMT) surface receptor that regulates the interactivity between the cells and the extracellular matrix, thereby promoting cell migration. The epidermal growth factor receptor (EGFR) family is a trans-membrane kinase-related protein. It regulates cell adhesion proteins, which may promote cell proliferation and invasiveness. Mesenchymal epithelial transition (MET) is another EMT receptor that stimulates cell proliferation, invasion, survival, and angiogenesis. This study aimed to evaluate the prognostic impact of CD44, EGFR expressions, and MET gene amplification in epithelial ovarian cancer (EOC). METHODS This is a retrospective cohort study, including 85 cases of EOC. CD44 and EGFR expressions were evaluated in both epithelial and stromal cells by immunohistochemistry. Tumor cells also underwent a cytogenetic analysis using fluorescent in situ hybridization (FISH) to detect MET gene amplification. RESULTS High CD44 expression in tumors was significantly associated with serous subtypes (P=0.001), peritoneal deposits (P=0.002), and advanced stage (P=0.002). EGFR high tumor expression demonstrated a significant association with lymph node metastasis (P=0.038) and the advanced stage of EOC (P=0.016). Increased copy number of the MET gene was significantly associated with partial therapy response (P=0.030). CD44 and EGFR tumor high expression was associated with poor overall survival (OS). In addition, MET gene gain in tumors was associated with a shorter OS (P=0.000). CONCLUSION EMT biomarkers (CD44 and MET) and EGFR expression in EOC are independent prognostic factors for OS. MET gene increase copy number was detected in cases of serous neoplasm and associated with poor survival and minimal therapy response.
Collapse
Affiliation(s)
- Israa Mostafa Kamal
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Etemad H Yassin
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Eman Mosad
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Hanan A
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut Egypt.
| | - Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt. ,For Correspondence:
| |
Collapse
|
25
|
Yang Z, Wang X, Hong W, Zhang S, Yang Y, Xia Y, Yang R. The pharmacological mechanism of Chinese herbs effective in treating advanced ovarian cancer: Integrated meta-analysis and network pharmacology analysis. Front Pharmacol 2022; 13:1040641. [PMID: 36438791 PMCID: PMC9682081 DOI: 10.3389/fphar.2022.1040641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2023] Open
Abstract
Background: Advanced ovarian cancer (AOC) develops rapidly, adding to difficulties in treatment. Traditional Chinese medicine (TCM) plays a significant role in the treatment of AOC, and so to explore the efficacy and safety of TCM in the treatment of AOC and its effective targets, we performed the following review. Methods: The major databases were searched for randomized controlled trials of TCM for the treatment of AOC. A meta-analysis of the efficacy of Chinese herbs on AOC was conducted using RevMan 5.4 software. Active compounds and target genes were acquired using the TCMSP database. The main targets of AOC were obtained through the GenCards, OMIM, TTD, and DrugBank databases. A protein-protein interaction network carried out on the STRING platform was used to select core genes. The Metascape platform was applied to achieve GO and KEGG enrichment analysis. Results: A total of 24 studies were included. Meta-analysis shows the TCM group improved the overall response rate (OR = 2.71; 95% CI = [2.14, 3.44], Z = 8.25, p < 0.00001), overall survival (OR = 2.93, 95% CI = [2.03, 4.24], Z = 5.72, p < 0.00001), and progression-free survival (OR = 5.36, 95% CI = [5.03, 5.69], Z = 31.88, p < 0.00001) of AOC patients, as well as reducing many adverse events. There were 120 compounds, 246 herb target genes, and 1503 disease targets extracted. The 10 most important components were quercetin, kaempferol, 7-methoxy-2-methyl isoflavone, formononetin, isorhamnetin, hederagenin, stigmasterol, luteolin, 7-O-methylisomucronulatol, and calycosin. The 20 core targets were TP53, STAT3, JUN, AKT1, MAPK3, RELA, MAPK1, ESR1, IL6, FOS, MAPK14, TNF, CDKN1A, RB1, CCND1, EGFR, STAT1, MDM2, MAPK8, and CAV1. KEGG enrichment analysis showed that there are many pathways directly related to different types of tumors, such as in pathway cancer and prostate cancer. Conclusion: Our article reveals TCM is effective and safe against AOC and that Chinese herbs exert effects on the disease through multi-target, multi-component, and multi-pathway mechanisms. Systematic Review Registration: (www.crd.york.ac.uk/PROSPERO/), identifier (CRD42022369731).
Collapse
Affiliation(s)
- Ze Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Wang
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wei Hong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyi Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Yang
- Department of Traditional Chinese Medicine, Neighborhood Good Doctor No. 6 Street Clinic, Hangzhou, China
| | - Yongliang Xia
- Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ruiwen Yang
- Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
26
|
Ren Y, Li R, Feng H, Xie J, Gao L, Chu S, Li Y, Meng F, Ning Y. Single-cell sequencing reveals effects of chemotherapy on the immune landscape and TCR/BCR clonal expansion in a relapsed ovarian cancer patient. Front Immunol 2022; 13:985187. [PMID: 36248860 PMCID: PMC9555851 DOI: 10.3389/fimmu.2022.985187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and chemoresistance are the leading causes of death in high-grade serous ovarian cancer (HGSOC) patients. However, the unique role of the immune environment in tumor progression for relapsed chemo-resistant patients remains elusive. In single-cell resolution, we characterized a comprehensive multi-dimensional cellular and immunological atlas from tumor, ascites, and peripheral blood of a chemo-resistant patient at different stages of treatment. Our results highlight a role in recurrence and chemoresistance of the immunosuppressive microenvironment in ascites, including MDSC-like myeloid and hypo-metabolic γδT cells, and of peripheral CD8+ effector T cells with chemotherapy-induced senescent/exhaustive. Importantly, paired TCR/BCR sequencing demonstrated relative conservation of TCR clonal expansion in hyper-expanded CD8+ T cells and extensive BCR clonal expansion without usage bias of V(D)J genes after chemotherapy. Thus, our study suggests strategies for ameliorating chemotherapy-induced immune impairment to improve the clinical outcome of HGSOC.
Collapse
Affiliation(s)
- Yanyu Ren
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Runrong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hanxiao Feng
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Jieying Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lin Gao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shuai Chu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Yan Li, ; Fanliang Meng, ; Yunshan Ning,
| | - Fanliang Meng
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
- *Correspondence: Yan Li, ; Fanliang Meng, ; Yunshan Ning,
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Yan Li, ; Fanliang Meng, ; Yunshan Ning,
| |
Collapse
|
27
|
Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: A therapeutic perspective. Bull Cancer 2022; 109:960-971. [DOI: 10.1016/j.bulcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
|
28
|
The Cell Surface Heparan Sulfate Proteoglycan Syndecan-3 Promotes Ovarian Cancer Pathogenesis. Int J Mol Sci 2022; 23:ijms23105793. [PMID: 35628603 PMCID: PMC9145288 DOI: 10.3390/ijms23105793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans that integrate signaling at the cell surface. By interacting with cytokines, signaling receptors, proteases, and extracellular matrix proteins, syndecans regulate cell proliferation, metastasis, angiogenesis, and inflammation. We analyzed public gene expression datasets to evaluate the dysregulation and potential prognostic impact of Syndecan-3 in ovarian cancer. Moreover, we performed functional in vitro analysis in syndecan-3-siRNA-treated SKOV3 and CAOV3 ovarian cancer cells. In silico analysis of public gene array datasets revealed that syndecan-3 mRNA expression was significantly increased 5.8-fold in ovarian cancer tissues (n = 744) and 3.4-fold in metastases (n = 44) compared with control tissue (n = 46), as independently confirmed in an RNAseq dataset on ovarian serous cystadenocarcinoma tissue (n = 374, controls: n = 133, 3.5-fold increase tumor vs. normal). Syndecan-3 siRNA knockdown impaired 3D spheroid growth and colony formation as stemness-related readouts in SKOV3 and CAOV3 cells. In SKOV3, but not in CAOV3 cells, syndecan-3 depletion reduced cell viability both under basal conditions and under chemotherapy with cisplatin, or cisplatin and paclitaxel. While analysis of the SIOVDB database did not reveal differences in Syndecan-3 expression between patients, sensitive, resistant or refractory to chemotherapy, KM Plotter analysis of 1435 ovarian cancer patients revealed that high syndecan-3 expression was associated with reduced survival in patients treated with taxol and platin. At the molecular level, a reduction in Stat3 activation and changes in the expression of Wnt and notch signaling constituents were observed. Our study suggests that up-regulation of syndecan-3 promotes the pathogenesis of ovarian cancer by modulating stemness-associated pathways.
Collapse
|
29
|
Li HN, Zhang HM, Li XR, Wang J, Xu T, Li SY, Dong ML, Wang G, Cui XQ, Yang X, Wu YL, Liao XH, Du YY. MiR-205-5p/GGCT Attenuates Growth and Metastasis of Papillary Thyroid Cancer by Regulating CD44. Endocrinology 2022; 163:6537106. [PMID: 35213720 PMCID: PMC8944316 DOI: 10.1210/endocr/bqac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Papillary thyroid cancer (PTC) remains the most common endocrine malignancy, despite marked achieves in recent decades, and the mechanisms underlying the pathogenesis and progression for PTC are incompletely elucidated. Accumulating evidence show that γ-glutamylcyclotransferase (GGCT), an enzyme participating in glutathione homeostasis and is elevated in multiple types of tumors, represents an attractive therapeutic target. Using bioinformatics, immunohistochemistry, qRT-PCR, and Western blot assays, we found that GGCT expression was upregulated in PTC and correlated with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the growth and metastasis ability of PTC cells both in vitro and in vivo and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP2, and MMP9) while increasing epithelial marker (E-cadherin) in PTC cells. We confirmed binding of microRNA-205-5p (miR-205-5p) on the 3'-UTR regions of GGCT by dual-luciferase reporter assay and RNA-RNA pull-down assay. Delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found that GGCT interacted with and stabilized CD44 in PTC cells by co-immunoprecipitation and immunohistochemistry assays. Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Hui-Min Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Jun Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Department of Obstetrics and Gynecology, Cancer Biology research center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xing-Hua Liao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
- Correspondence: Xing-Hua Liao, Ph.D., College of Life Science and Health, Wuhan University of Science and Technology, People’s Republic of China.
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Correspondence: Ya-Ying Du, M.D., Ph.D., Surgeon of Department of Thyroid and Breast Surgery, Tongji Hospital, Deputy Dean for Clinical Affairs, Laboratory of Thyroid and Breast Surgery, People’s Republic of China.
| |
Collapse
|
30
|
Xie B, Tan G, Ren J, Lu W, Pervaz S, Ren X, Otoo AA, Tang J, Li F, Wang Y, Wang M. RB1 Is an Immune-Related Prognostic Biomarker for Ovarian Cancer. Front Oncol 2022; 12:830908. [PMID: 35299734 PMCID: PMC8920998 DOI: 10.3389/fonc.2022.830908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most lethal gynecologic malignancies and a leading cause of death in the world. Thus, this necessitates identification of prognostic biomarkers which will be helpful in its treatment. Methods The gene expression profiles from The Cancer Genome Atlas (TCGA) and GSE31245 were selected as the training cohort and validation cohort, respectively. The Kaplan–Meier (KM) survival analysis was used to analyze the difference in overall survival (OS) between high and low RB transcriptional corepressor 1 (RB1) expression groups. To confirm whether RB1 was an independent risk factor for OC, we constructed a multivariate Cox regression model. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were conducted to identify the functions of differentially expressed genes (DEGs). The associations of RB1 with immune infiltration and immune checkpoints were studied by the Tumor Immune Estimation Resource (TIMER 2.0) and the Gene Expression Profiling Interactive Analysis (GEPIA). The immunohistochemistry (IHC) was performed to compare the expression level of RB1 in normal tissues and tumor samples, and to predict the prognosis of OC. Results The KM survival curve of the TCGA indicated that the OS in the high-risk group was lower than that in the low-risk group (HR = 1.61, 95% CI: 1.28-2.02, P = 3×10-5), which was validated in GSE31245 (HR = 4.08, 95% CI: 1.21–13.74, P = 0.01) and IHC. Multivariate Cox regression analysis revealed that RB1 was an independent prognostic biomarker (HR = 1.66, 95% CI: 1.31-2.10, P = 2.02×10-5). Enrichment analysis suggested that the DEGs were mainly involved in cell cycle, DNA replication, and mitochondrial transition. The infiltration levels of fibroblast, neutrophil, monocyte and macrophage were positively correlated with RB1. Furthermore, RB1 was associated with immune checkpoint molecules (CTLA4, LAG3, and CD274). The IHC staining revealed higher expression of RB1 in tumor tissues as compared to that in normal tissues (P = 0.019). Overexpression of RB1 was associated with poor prognosis of OC (P = 0.01). Conclusion These findings suggest that RB1 was a novel and immune-related prognostic biomarker for OC, which may be a promising target for OC treatment.
Collapse
Affiliation(s)
- Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jingyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Antonia Adwoa Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Li Y, Nie Y, Guo H, Guo H, Ha C, Li Y. Establish of an Initial Platinum-Resistance Predictor in High-Grade Serous Ovarian Cancer Patients Regardless of Homologous Recombination Deficiency Status. Front Oncol 2022; 12:847085. [PMID: 35372049 PMCID: PMC8971787 DOI: 10.3389/fonc.2022.847085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Ovarian cancer (OC) is still the leading aggressive and lethal disease of gynecological cancers, and platinum-based regimes are the standard treatments. However, nearly 20%–30% of patients with OC are initial platinum resistant (IPR), and there is a lack of valid tools to predict whether they will be primary platinum resistant or not prior to chemotherapy. Methods Transcriptome data from The Cancer Genome Atlas (TCGA) was downloaded as the training data, and transcriptome data of GSE15622, GSE102073, GSE19829, and GSE26712 were retrieved from Gene Expression Omnibus (GEO) as the validation cohorts. Differentially expressed genes (DEGs) were selected between platinum-sensitive and platinum-resistant patients from the training cohort, and multiple machine-learning algorithms [including random forest, XGboost, and least absolute shrinkage and selection operator (LASSO) regression] were utilized to determine the candidate genes from DEGs. Then, we applied logistic regression to establish the IPR signature based on the expression. Finally, comprehensive clinical, genomic, and survival feature were analyzed to understand the application value of the established IPR signature. Results A total of 532 DEGs were identified between platinum-resistant and platinum-sensitive samples, and 11 of them were shared by these three-machine learning algorithms and utilized to construct an IPR prediction signature. The area under receiver operating characteristic curve (AUC) was 0.841 and 0.796 in the training and validation cohorts, respectively. Notably, the prediction capacity of this signature was stable and robust regardless of the patients’ homologous recombination deficiency (HRD) and mutation burden status. Meanwhile, the genomic feature was concordant between samples with high- or low-IPR signature, except a significantly higher prevalence of gain at Chr19q.12 (regions including CCNE1) in the high-IPR signature samples. The efficacy of prediction of platinum resistance of IPR signature successfully transferred to the precise survival prediction, with the AUC of 0.71, 0.72, and 0.66 to predict 1-, 3-, and 5-year survival, respectively. At last, we found a significantly different tumor-infiltrated lymphocytes feature, including lower abundance of CD4+ naive T cells in the samples with high-IPR signature. A relatively lower tumor immune dysfunction and exclusion (TIDE) value and more sensitivity to multiple therapies including Gefitinib may suggest the potency to transfer from platinum-based therapy to immunotherapy or target therapies in patients with high-IPR signature. Conclusion Our study established an IPR signature based on the expression of 11 genes that could stably and robustly distinguish OC patients with IPR and/or poor outcomes, which may guide therapeutic regimes tailoring.
Collapse
Affiliation(s)
- Yongmei Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yufei Nie
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hua Guo
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Chunfang Ha, ; Yuan Li,
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Chunfang Ha, ; Yuan Li,
| |
Collapse
|
32
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Zou GP, Yu CX, Shi SL, Li QG, Wang XH, Qu XH, Yang ZJ, Yao WR, Yan DD, Jiang LP, Wan YY, Han XJ. Mitochondrial Dynamics Mediated by DRP1 and MFN2 Contributes to Cisplatin Chemoresistance in Human Ovarian Cancer SKOV3 cells. J Cancer 2022; 12:7358-7373. [PMID: 35003356 PMCID: PMC8734405 DOI: 10.7150/jca.61379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin (DDP) is the first-line chemotherapeutic agent for ovarian cancer. However, the development of DDP resistance seriously influences the chemotherapeutic effect and prognosis of ovarian cancer. It was reported that DDP can directly impinge on the mitochondria and activate the intrinsic apoptotic pathway. Herein, the role of mitochondrial dynamics in DDP chemoresistance in human ovarian cancer SKOV3 cells was investigated. In DDP-resistant SKOV3/DDP cells, mitochondrial fission protein DRP1 was down-regulated, while mitochondrial fusion protein MFN2 was up-regulated. In accordance with the expression of DRP1 and MFN2, the average mitochondrial length was significantly increased in SKOV3/DDP cells. In DDP-sensitive parental SKOV3 cells, downregulation of DRP1 and upregulation of mitochondrial fusion proteins including MFN1,2 and OPA1 occurred at day 2~6 under cisplatin stress. Knockdown of DRP1 or overexpression of MFN2 promoted the resistance of SKOV3 cells to cisplatin. Intriguingly, weaker migration capability and lower ATP level were detected in SKOV3/DDP cells. Respective knockdown of DRP1 in parental SKOV3 cells or MFN2 in SKOV3/DDP cells using siRNA efficiently reversed mitochondrial dynamics, migration capability and ATP level. Moreover, MFN2 siRNA significantly aggravated the DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3/DDP cells. In contrast, DRP1 siRNA alleviated DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3 cells. Thus, these results indicate that mitochondrial dynamics mediated by DRP1 and MFN2 contributes to the development of DDP resistance in ovarian cancer cells, and will also provide a new strategy to prevent chemoresistance in ovarian cancer by targeting mitochondrial dynamics.
Collapse
Affiliation(s)
- Guang-Ping Zou
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chun-Xia Yu
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sheng-Lan Shi
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Gen Li
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Hua Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhang-Jian Yang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei-Rong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dan-Dan Yan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu-Ying Wan
- Department of Intra-hospital Infection Management, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res 2022; 14:7341-7358. [PMID: 34992421 PMCID: PMC8714015 DOI: 10.2147/jir.s344554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Pyroptosis is a form of lytic programmed cell death that is associated with the pathogenesis of many tumors. However, the potential roles of pyroptosis-related genes (PRGs) in the tumor microenvironment (TME) remain unclear. Materials and Methods We systematically described the genetic and transcriptional alterations in PRGs in gynecological cancers. An unsupervised clustering method was used to investigate the molecular subtypes of ovarian cancer (OV) and systematically analyze the TME cell infiltration characteristics. A prognostic signature and nomogram were established to quantify the pyroptosis patterns of individual tumors. We also analyzed the expression levels of eight PRGs in the OV tissues. Results Two distinct molecular subtypes of OV were identified, and these two distinct molecular subtypes could predict clinicopathological features, prognosis, TME stromal activity, immune infiltrating cells, and immune checkpoints. A prognostic signature was established, and its predictive capability was validated. Low risk score, characterized by activation of immunity, upregulation of programmed death-ligand 1 expression, lower tumor immune dysfunction and exclusion scores, lower tumor mutation burden, and favorable prognosis. These findings suggested that low-risk patients with OV may be more sensitive to immunotherapy. In addition, this signature could effectively predict the response to chemotherapy in patients with OV. Furthermore, a prognostic nomogram was generated, which exhibited superior predictive accuracy. Conclusion This study highlights the crucial role of PRGs in the TME and may help develop immunotherapies and promote individualized therapeutic strategies for patients with OV.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jianfeng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
35
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|
36
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
37
|
Jin Y, Huynh DTN, Myung CS, Heo KS. Ginsenoside Rh1 Prevents Migration and Invasion through Mitochondrial ROS-Mediated Inhibition of STAT3/NF-κB Signaling in MDA-MB-231 Cells. Int J Mol Sci 2021; 22:ijms221910458. [PMID: 34638797 PMCID: PMC8508665 DOI: 10.3390/ijms221910458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) a very common cancer in women worldwide. Triple negative breast cancer (TNBC) has been shown to have a poor prognosis with a high level of tumor metastatic spread. Here, the inhibitory effects of ginsenoside-Rh1 (Rh1) on BC metastasis, and its underlying signaling pathway in TNBC were investigated. Rh1-treated MDA-MB-231 cells were analyzed for metastasis using a wound healing assay, transwell migration and invasion assay, western blotting, and qRT-PCR. Rh1 treatment significantly inhibited BC metastasis by inhibiting the both protein and mRNA levels of MMP2, MMP9, and VEGF-A. Further, Rh1-mediated inhibitory effect on BC migration was associated with mitochondrial ROS generation. Rh1 treatment significantly eliminated STAT3 phosphorylation and NF-κB transactivation to downregulate metastatic factors, such as MMP2, MMP9, and VEGF-A. In addition, Mito-TEMPO treatment reversed Rh1 effects on the activation of STAT3, NF-κB, and their transcriptional targets. Rh1 further enhanced the inhibitory effects of STAT3 or NF-κB specific inhibitor, stattic or BAY 11-7082 on MMP2, MMP9, and VEGF-A expression, respectively. In summary, our results revealed the potent anticancer effect of Rh1 on TNBC migration and invasion through mtROS-mediated inhibition of STAT3 and NF-κB signaling.
Collapse
|
38
|
Zhang D, Zou D, Deng Y, Yang L. Systematic analysis of the relationship between ovarian cancer prognosis and alternative splicing. J Ovarian Res 2021; 14:120. [PMID: 34526089 PMCID: PMC8442315 DOI: 10.1186/s13048-021-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer(OC) is the gynecological tumor with the highest mortality rate, effective biomarkers are of great significance in improving its prognosis. In recent years, there have been many studies on alternative splicing (AS) events, and the role of AS events in tumor has become a focus of attention. Methods Data were downloaded from the TCGA database and Univariate Cox regression analysis was performed to determine AS events associated with OC prognosis.Eight prognostic models of OC were constructed in R package, and the accuracy of the models were evaluated by the time-dependent receiver operating characteristic (ROC) curves.Eight types of survival curves were drawn to evaluate the differences between the high and low risk groups.Independent prognostic factors of OC were analyzed by single factor independent analysis and multi-factor independent prognostic analysis.Again, Univariate Cox regression analysis was used to analyze the relationship between splicing factors(SF) and AS events, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on OS-related SFs to understand the pathways. Results Univariate Cox regression analysis showed that among the 15,278 genes, there were 31,286 overall survival (OS) related AS events, among which 1524 AS events were significantly correlated with OS. The area under the time-dependent receiver operating characteristic curve (AUC) of AT and ME were the largest and the RI was the smallest,which were 0.757 and 0.68 respectively. The constructed models have good value for the prognosis assessment of OC patients. Among the eight survival curves, AP was the most significant difference between the high and low risk groups, with a P value of 1.61e − 1.The results of single factor independent analysis and multi-factor independent prognostic analysis showed that risk score calculated by the model and age could be used as independent risk factors.According to univariate COX regression analysis,109 SFs were correlated with AS events and adjusted in two ways: positive and negative. Conclusions SFs and AS events can directly or indirectly affect the prognosis of OC patients. It is very important to find effective prognostic markers to improve the survival rate of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00866-1.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zou
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yue Deng
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lihua Yang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
39
|
Chen M, Su J, Feng C, Liu Y, Zhao L, Tian Y. Chemokine CCL20 promotes the paclitaxel resistance of CD44 +CD117 + cells via the Notch1 signaling pathway in ovarian cancer. Mol Med Rep 2021; 24:635. [PMID: 34278466 PMCID: PMC8280726 DOI: 10.3892/mmr.2021.12274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have found that C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6)/notch receptor 1 (Notch1) signaling serves an important role in various diseases, but its role and mechanism in ovarian cancer remains to be elucidated. The aim of the present study was to investigate the underlying mechanism of CCL20/CCR6/Notch1 signaling in paclitaxel (PTX) resistance of a CD44+CD117+ subgroup of cells in ovarian cancer. The CD44+CD117+ cells were isolated from SKOV3 cells, followed by determination of the PTX resistance and the CCR6/Notch1 axis. Notch1 was silenced in the CD44+CD117+ subgroup and these cells were treated with CCL20, followed by examination of PTX resistance and the CCR6/Notch1 axis. Furthermore, in nude mice, CD44+CD117+ and CD44‑CD117‑ cells were used to establish the xenograft model and cells were treated with PTX and/or CCL20, followed by proliferation, apoptosis, reactive oxygen species (ROS) and mechanism analyses. Higher expression levels of Oct4, CCR6, Notch1 and ATP binding cassette subfamily G member 1 (ABCG1), increased sphere formation ability, IC50 and proliferative ability, as well as lower ROS levels and apoptosis were observed in CD44+CD117+ cells compared with the CD44‑CD117‑ cells. It was found that CCL20 could significantly increase the expression levels of Oct4, CCR6, Notch1 and ABCG1, enhance the IC50, sphere formation ability and proliferation, as well as decrease the ROS and apoptosis levels in the CD44+CD117+ cells. However, Notch1 knockdown could markedly reverse these changes. Moreover, CCL20 could significantly increase the proliferation and expression levels of Oct4, CCR6, Notch1 and ABCG1 in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. After treatment with PTX, apoptosis and ROS levels were decreased in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. Collectively, the present results demonstrated that, via the Notch1 pathway, CCL20/CCR6 may promote the stemness and PTX resistance of CD44+CD117+ cells in ovarian cancer.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Juan Su
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Chunmei Feng
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Ying Liu
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
40
|
Ba S, Yu M. Ultrasound-stimulated microbubbles enhances radiosensitivity of ovarian cancer. Acta Radiol 2021; 63:1433-1440. [PMID: 34463146 DOI: 10.1177/02841851211038808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Radiation therapy is regarded as an effective treatment for early ovarian cancer (OC). However, due to radiation resistance caused by DNA double-strand breaks (DSBs) and angiogenesis, the efficacy of radiotherapy for advanced OC is limited and controversial. PURPOSE To explore whether ultrasound-stimulated microbubbles (USMBs) can enhance the radiosensitivity of OC. MATERIAL AND METHODS OC cells (ES-2) were respectively irradiated with 5-Gy and 10-Gy radiation doses with or without exposure to USMB. Methyl thiazolyltetrazolium (MTT) and colony-formation assays were conducted to detect the viability and proliferation of ES-2 cells after USMBs and ionizing radiation (IR) treatment. Immunofluorescence assays were conducted to examine levels of gamma-H2A histone family member X (γ-H2AX), an indicator for DSBs. Flow cytometry analyses were carried out to assess the apoptosis of ES-2 cells. The angiogenic activity of human umbilical vein endothelial cells (HUVECs) was measured by tube formation assays. RESULTS USMBs enhanced IR-induced suppressive effect on the viability and proliferation of OC cells. The protein levels of phosphorylated γ-H2AX and CHK1 were significantly upregulated after IR treatment and further enhanced by USMBs. In addition, USMBs enhanced the promotion of IR-mediated OC cell apoptosis. The inhibitory effect of IR on angiogenesis was further enhanced by USMBs, and protein levels of AT1R, VEGFA, and EGFR were downregulated by IR in a dose-dependent way and then enhanced by USMB treatment in HUVECs. CONCLUSIONS USMB exposure significantly enhances the radiosensitivity of OC by suppressing cell proliferation, promoting OC cell apoptosis, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Shuang Ba
- Department of Ultrasound, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, PR China
| | - Ming Yu
- Department of Ultrasound, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, PR China
| |
Collapse
|
41
|
Therapeutic Strategies for Targeting Ovarian Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22105059. [PMID: 34064635 PMCID: PMC8151268 DOI: 10.3390/ijms22105059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a fatal gynecological malignancy. Although first-line chemotherapy and surgical operation are effective treatments for ovarian cancer, its clinical management remains a challenge owing to intrinsic or acquired drug resistance and relapse at local or distal lesions. Cancer stem cells (CSCs) are a small subpopulation of cells inside tumor tissues, and they can self-renew and differentiate. CSCs are responsible for the cancer malignancy involved in relapses as well as resistance to chemotherapy and radiation. These malignant properties of CSCs are regulated by cell surface receptors and intracellular pluripotency-associated factors triggered by internal or external stimuli from the tumor microenvironment. The malignancy of CSCs can be attenuated by individual or combined restraining of cell surface receptors and intracellular pluripotency-associated factors. Therefore, targeted therapy against CSCs is a feasible therapeutic tool against ovarian cancer. In this paper, we review the prominent roles of cell surface receptors and intracellular pluripotency-associated factors in mediating the stemness and malignancy of ovarian CSCs.
Collapse
|
42
|
Xu L, Zhang B, Li W. Downregulated expression levels of USP46 promote the resistance of ovarian cancer to cisplatin and are regulated by PUM2. Mol Med Rep 2021; 23:263. [PMID: 33576437 PMCID: PMC7893694 DOI: 10.3892/mmr.2021.11902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is a major contributor to cancer‑related mortality in women. Despite numerous drugs being available for the treatment and improving the prognosis of OC, resistance to clinical chemotherapy remains a major obstacle for the treatment of advanced OC. Therefore, determining how to reverse the chemoresistance of OC has become a research hotspot in recent years. The present study aimed to reveal the potential mechanism of OC chemoresistance. Reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of Ubiquitin‑specific peptidase 46 (USP46) and Pumilio 2 (PUM2) in OC. Cell viability and apoptosis were evaluated by Cell Counting Kit‑8 assay and flow cytometry, respectively. The association between USP46 and PUM2 was assessed by RNA immunoprecipitation. The results of the present study revealed that the expression levels of USP46 which is associated with tumor progression, was downregulated, while PUM2 expression levels were upregulated in cisplatin (DDP)‑resistant OC cells and patient tissues. The downregulation of USP46 expression levels in SKOV3 cells significantly inhibited cell apoptosis and increased cell viability. In SKOV3/DDP cells, the upregulation of USP46 expression levels notably suppressed cell viability and increased cell apoptosis. The results of the RNA immunoprecipitation chip assay demonstrated that PUM2 bound to USP46 and regulated its expression. Furthermore, following the knockdown of USP46 expression, the mRNA and protein expression levels of the cell apoptosis‑related protein, Bcl‑2, were upregulated, whereas the expression levels of caspase‑3, caspase‑9 and Bax were significantly downregulated. In addition, phosphorylated AKT expression levels were notably upregulated. Following the overexpression of USP46 in SKOV3/DDP cells, the opposite trends were observed. In SKOV3 cells, the knockdown of PUM2 could reverse the DDP resistance induced by small interfering RNA‑USP46 as the expression levels of Bcl‑2 were downregulated whereas those of caspase‑3, caspase‑9 and Bax were upregulated compared with the small interfering‑USP46 group. Similarly, in SKOV3/DDP cells, the overexpression of PUM2 could reverse DDP sensitivity induced by the overexpression of USP46. In conclusion, the findings of the present study suggested that the downregulation of USP46 expression levels may promote DDP resistance in OC, which may be regulated by PUM2. Therefore, targeting PUM2/USP46 may be an effective way to reverse DDP resistance in OC.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gynecology, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Bin Zhang
- Department of Surgery, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Wenlan Li
- Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|