1
|
He K, Wang H, Huo R, Jiang SH, Xue J. Schwann cells and enteric glial cells: Emerging stars in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189160. [PMID: 39059672 DOI: 10.1016/j.bbcan.2024.189160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cancer neuroscience, a promising field dedicated to exploring interactions between cancer and the nervous system, has attracted growing attention. The gastrointestinal tracts exhibit extensive innervation, notably characterized by intrinsic innervation. The gut harbors a substantial population of glial cells, including Schwann cells wrapping axons of neurons in the peripheral nervous system and enteric glial cells intricately associated with intrinsic innervation. Glial cells play a crucial role in maintaining the physiological functions of the intestine, encompassing nutrient absorption, barrier integrity, and immune modulation. Nevertheless, it has only been in recent times that the significance of glial cells within colorectal cancer (CRC) has begun to receive considerable attention. Emerging data suggests that glial cells in the gut contribute to the progression and metastasis of CRC, by interacting with cancer cells, influencing inflammation, and modulating the tumor microenvironment. Here, we summarize the significant roles of glial cells in the development and progression of CRC and discuss the latest technologies that can be integrated into this field for in-depth exploration, as well as potential specific targeted strategies for future exploration to benefit patients.
Collapse
Affiliation(s)
- Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
van Baarle L, De Simone V, Schneider L, Santhosh S, Abdurahiman S, Biscu F, Schneider R, Zanoletti L, Siqueira de Mello R, Verbandt S, Hu Z, Stakenborg M, Ke BJ, Stakenborg N, Salvador Laureano R, García-Reyes B, Henn J, Toma M, Vanmechelen M, Boeckxstaens G, De Smet F, Garg AD, Ibiza S, Tejpar S, Wehner S, Matteoli G. IL-1R signaling drives enteric glia-macrophage interactions in colorectal cancer. Nat Commun 2024; 15:6079. [PMID: 39030280 PMCID: PMC11271635 DOI: 10.1038/s41467-024-50438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Enteric glia have been recently recognized as key components of the colonic tumor microenvironment indicating their potential role in colorectal cancer pathogenesis. Although enteric glia modulate immune responses in other intestinal diseases, their interaction with the colorectal cancer immune cell compartment remains unclear. Through a combination of single-cell and bulk RNA-sequencing, both in murine models and patients, here we find that enteric glia acquire an immunomodulatory phenotype by bi-directional communication with tumor-infiltrating monocytes. The latter direct a reactive enteric glial cell phenotypic and functional switch via glial IL-1R signaling. In turn, tumor glia promote monocyte differentiation towards pro-tumorigenic SPP1+ tumor-associated macrophages by IL-6 release. Enteric glia cell abundancy correlates with worse disease outcomes in preclinical models and colorectal cancer patients. Thereby, our study reveals a neuroimmune interaction between enteric glia and tumor-associated macrophages in the colorectal tumor microenvironment, providing insights into colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- Lies van Baarle
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Veronica De Simone
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Sneha Santhosh
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Reiner Schneider
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Lisa Zanoletti
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Renata Siqueira de Mello
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Zedong Hu
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bo-Jun Ke
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Raquel Salvador Laureano
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Balbina García-Reyes
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf (MSSO ABCD), University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Jonas Henn
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Marieta Toma
- Department of Pathology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maxime Vanmechelen
- Translational Cell and Tissue Research Unit, Department of Imaging & Pathology, Laboratory for Precision Cancer Medicine, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research Unit, Department of Imaging & Pathology, Laboratory for Precision Cancer Medicine, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sales Ibiza
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany.
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Bali V, Grubišić V. Enteric glia as friends and foes of the intestinal epithelial barrier function. Front Immunol 2024; 15:1394654. [PMID: 38873614 PMCID: PMC11169670 DOI: 10.3389/fimmu.2024.1394654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Vedrana Bali
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Vladimir Grubišić
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
5
|
Prochera A, Muppirala AN, Kuziel GA, Soualhi S, Shepherd A, Sun L, Issac B, Rosenberg HJ, Karim F, Perez K, Smith KH, Archibald TH, Rakoff-Nahoum S, Hagen SJ, Rao M. Enteric glia regulate Paneth cell secretion and intestinal microbial ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589545. [PMID: 38659931 PMCID: PMC11042301 DOI: 10.1101/2024.04.15.589545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Anoohya N Muppirala
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Gavin A Kuziel
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Harry J Rosenberg
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Farah Karim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristina Perez
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kyle H Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tonora H Archibald
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
6
|
Cai Z, Yao H, Chen J, Ahmed AA, Li C, Hu X, Tang X, Jiang C. Schwann cells in pancreatic cancer: Unraveling their multifaceted roles in tumorigenesis and neural interactions. Cancer Lett 2024; 587:216689. [PMID: 38367898 DOI: 10.1016/j.canlet.2024.216689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by heightened neural density, presents a challenging prognosis primarily due to perineural invasion. Recognized for their crucial roles in neural support and myelination, Schwann cells (SCs) significantly influence the process of tumorigenesis. This review succinctly outlines the interplay between PDAC and neural systems, positioning SCs as a nexus in the tumor-neural interface. Subsequently, it delves into the cellular origin and influencers of SCs within the pancreatic tumor microenvironment, emphasizing their multifaceted roles in tumor initiation, progression, and modulation of the neural and immune microenvironment. The discussion encompasses potential therapeutic interventions targeting SCs. Lastly, the review underscores pressing issues, advocating for sustained exploration into the diverse contributions of SCs within the intricate landscape of PDAC, with the aim of enhancing our understanding of their involvement in this complex malignancy.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hongfei Yao
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Jiahao Chen
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Abousalam Abdoulkader Ahmed
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chunjing Li
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiao Hu
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiaoyan Tang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chongyi Jiang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
7
|
Lehrer S, Rheinstein PH. Chromosome 1p deletion in colorectal cancer and lower grade glioma: possible relationship with the enteric nervous system. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298214. [PMID: 38196589 PMCID: PMC10775321 DOI: 10.1101/2023.11.07.23298214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Enteric neurons and enteric glial cells are a part of the enteric nervous system, which is sometimes referred to as the "second brain" of the body. This complex network of neurons controls various functions of the gastrointestinal tract, including motility, secretion, and blood flow. Research has shown that there is a connection between enteric neurons and the development of colorectal cancer, although the exact mechanisms are still being studied. Methods Because of the potential influence of chromosome mutations that may be common to both gliomas and colorectal cancer, we used the Cancer Genome Atlas (TCGA) to examine these mutations. Results 166 of 506 lower grade gliomas had the 1p 19q co-deletion. 150 of 616 colorectal cancers had a 1p deletion but no 19q deletion. Conclusion Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Therefore, cancer cells might be expected to pick up mutations from neurons and enteric glial cells during recombination events. We hypothesize that the chromosome 1p deletion in colorectal cancer above is not a chance event and instead was acquired from adjacent enteric glial cells. Chromosome 1p co-deletion may confer better survival in patients with lower grade glioma in part because of loss of the MycBP oncogene, which is important in glioma development. Enteric glia might have the chromosome 1p deletion but lack the chromosome 19q deletion of CNS gliomas, making them much less vulnerable to malignant transformation than CNS gliomas. Indeed, evidence exists for a tumor suppressor gene on chromosome 19q associated with human astrocytomas, oligodendrogliomas, and mixed gliomas.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai New York
| | | |
Collapse
|
8
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Mariant CL, Bacola G, Van Landeghem L. Mini-Review: Enteric glia of the tumor microenvironment: An affair of corruption. Neurosci Lett 2023; 814:137416. [PMID: 37572875 PMCID: PMC10967235 DOI: 10.1016/j.neulet.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The tumor microenvironment corresponds to a complex mixture of bioactive products released by local and recruited cells whose normal functions have been "corrupted" by cues originating from the tumor, mostly to favor cancer growth, dissemination and resistance to therapies. While the immune and the mesenchymal cellular components of the tumor microenvironment in colon cancer have been under intense scrutiny over the last two decades, the influence of the resident neural cells of the gut on colon carcinogenesis has only very recently begun to draw attention. The vast majority of the resident neural cells of the gastrointestinal tract belong to the enteric nervous system and correspond to enteric neurons and enteric glial cells, both of which have been understudied in the context of colon cancer development and progression. In this review, we especially discuss available evidence on enteric glia impact on colon carcinogenesis. To highlight "corrupted" functioning in enteric glial cells of the tumor microenvironment and its repercussion on tumorigenesis, we first review the main regulatory effects of enteric glial cells on the intestinal epithelium in homeostatic conditions and we next present current knowledge on enteric glia influence on colon tumorigenesis. We particularly examine how enteric glial cell heterogeneity and plasticity require further appreciation to better understand the distinct regulatory interactions enteric glial cell subtypes engage with the various cell types of the tumor, and to identify novel biological targets to block enteric glia pro-carcinogenic signaling.
Collapse
Affiliation(s)
- Chloe L Mariant
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Bubeck M, Becker C, Patankar JV. Guardians of the gut: influence of the enteric nervous system on the intestinal epithelial barrier. Front Med (Lausanne) 2023; 10:1228938. [PMID: 37692784 PMCID: PMC10485265 DOI: 10.3389/fmed.2023.1228938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
The intestinal mucosal surface forms one of the largest areas of the body, which is in direct contact with the environment. Co-ordinated sensory functions of immune, epithelial, and neuronal cells ensure the timely detection of noxious queues and potential pathogens and elicit proportional responses to mitigate the threats and maintain homeostasis. Such tuning and maintenance of the epithelial barrier is constantly ongoing during homeostasis and its derangement can become a gateway for systemic consequences. Although efforts in understanding the gatekeeping functions of immune cells have led the way, increasing number of studies point to a crucial role of the enteric nervous system in fine-tuning and maintaining this delicate homeostasis. The identification of immune regulatory functions of enteric neuropeptides and glial-derived factors is still in its infancy, but has already yielded several intriguing insights into their important contribution to the tight control of the mucosal barrier. In this review, we will first introduce the reader to the current understanding of the architecture of the enteric nervous system and the epithelial barrier. Next, we discuss the key discoveries and cellular pathways and mediators that have emerged as links between the enteric nervous, immune, and epithelial systems and how their coordinated actions defend against intestinal infectious and inflammatory diseases. Through this review, the readers will gain a sound understanding of the current neuro-immune-epithelial mechanisms ensuring intestinal barrier integrity and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jay V. Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
11
|
Prochera A, Rao M. Mini-Review: Enteric glial regulation of the gastrointestinal epithelium. Neurosci Lett 2023; 805:137215. [PMID: 37001854 PMCID: PMC10125724 DOI: 10.1016/j.neulet.2023.137215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many enteric glia are located along nerve fibers in the gut mucosa where they form close associations with the epithelium lining the gastrointestinal tract. The gut epithelium is essential for absorbing nutrients, regulating fluid flux, forming a physical barrier to prevent the entry of pathogens and toxins into the host, and participating in immune responses. Disruptions to this epithelium are linked to numerous diseases, highlighting its central importance in maintaining health. Accumulating evidence indicates that glia regulate gut epithelial homeostasis. Observations from glial-epithelial co-cultures in vitro and mouse genetic models in vivo suggest that enteric glia influence several important features of the gut epithelium including barrier integrity, ion transport, and capacity for self-renewal. Here we review the evidence for enteric glial regulation of the intestinal epithelium, with a focus on these three features of its biology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Szlachcic WJ, Letai KC, Scavuzzo MA, Borowiak M. Deep into the niche: Deciphering local endoderm-microenvironment interactions in development, homeostasis, and disease of pancreas and intestine. Bioessays 2023; 45:e2200186. [PMID: 36871153 DOI: 10.1002/bies.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Unraveling molecular and functional heterogeneity of niche cells within the developing endoderm could resolve mechanisms of tissue formation and maturation. Here, we discuss current unknowns in molecular mechanisms underlying key developmental events in pancreatic islet and intestinal epithelial formation. Recent breakthroughs in single-cell and spatial transcriptomics, paralleled with functional studies in vitro, reveal that specialized mesenchymal subtypes drive the formation and maturation of pancreatic endocrine cells and islets via local interactions with epithelium, neurons, and microvessels. Analogous to this, distinct intestinal niche cells regulate both epithelial development and homeostasis throughout life. We propose how this knowledge can be used to progress research in the human context using pluripotent stem cell-derived multilineage organoids. Overall, understanding the interactions between the multitude of microenvironmental cells and how they drive tissue development and function could help us make more therapeutically relevant in vitro models.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katherine C Letai
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Baghdadi MB, Kim TH. The multiple roles of enteric glial cells in intestinal homeostasis and regeneration. Semin Cell Dev Biol 2023:S1084-9521(23)00005-8. [PMID: 36658046 DOI: 10.1016/j.semcdb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The gastrointestinal tract is innervated by the enteric nervous system (ENS), a complex network of neurons and glial cells, also called the "second brain". Enteric glial cells, one of the major cell types in the ENS, are located throughout the entire gut wall. Accumulating evidence has demonstrated their critical requirement for gut physiology. Notably, recent studies have shown that enteric glial cells control new aspects of gut function such as regulation of intestinal stem cell behavior and immunity. In addition, the emergence of single-cell genomics technologies has revealed enteric glial cell heterogeneity and plasticity. In this review, we discuss established and emerging concepts regarding the roles of mammalian enteric glial cells and their heterogeneity in gut development, homeostasis, and regeneration.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
14
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
15
|
Progatzky F, Pachnis V. The role of enteric glia in intestinal immunity. Curr Opin Immunol 2022; 77:102183. [DOI: 10.1016/j.coi.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
|
16
|
Middelhoff M, Valenti G, Tomassoni L, Ochiai Y, Belin B, Takahashi R, Malagola E, Nienhüser H, Finlayson M, Hayakawa Y, Zamechek LB, Renz BW, Westphalen CB, Quante M, Margolis KG, Sims PA, Laise P, Califano A, Rao M, Gershon MD, Wang TC. Adult enteric Dclk1-positive glial and neuronal cells reveal distinct responses to acute intestinal injury. Am J Physiol Gastrointest Liver Physiol 2022; 322:G583-G597. [PMID: 35319286 PMCID: PMC9109794 DOI: 10.1152/ajpgi.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023]
Abstract
Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.
Collapse
Affiliation(s)
- Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Finlayson
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Internal Medicine, Comprehensive Cancer Center, Hospital of the University of Munich, Munich, Germany
| | - Michael Quante
- Klinik für Innere Medizin II, Gastrointestinale Onkologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Kara G Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Peter A Sims
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Pasquale Laise
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- DarwinHealth Inc., New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Meenakshi Rao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children´s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
17
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
18
|
Abstract
The gut houses one of the largest populations of glia in the nervous system, yet their essential functions remain unclear. New work by Progatzky et al. (2021) in Nature reveals that these enteric glia orchestrate an IFNγ-dependent immune response to helminth infection that promotes tissue repair.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Milena Bogunovic
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Abstract
Glia, the non-neuronal cells of the nervous system, were long considered secondary cells only necessary for supporting the functions of their more important neuronal neighbors. Work by many groups over the past two decades has completely overturned this notion, revealing the myriad and vital functions of glia in nervous system development, plasticity, and health. The largest population of glia outside the brain is in the enteric nervous system, a division of the autonomic nervous system that constitutes a key node of the gut-brain axis. Here, we review the latest in the understanding of these enteric glia in mammals with a focus on their putative roles in human health and disease.
Collapse
Affiliation(s)
- Harry J. Rosenberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
The Emerging Role of Nerves and Glia in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13010152. [PMID: 33466373 PMCID: PMC7796331 DOI: 10.3390/cancers13010152] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The influence of nerves on different types of cancers, including colorectal cancer, is increasingly recognized. The intestines are highly innervated, both from outside the intestines (extrinsic innervation) and by a nervous system of their own; the enteric nervous system (intrinsic innervation). Nerves and cancer cells have been described to communicate with each other, although the exact mechanism in colorectal cancer is not yet explored. Nerves can enhance cancer progression by secreting signaling molecules, and cancer cells are capable of stimulating nerve growth. This review summarizes the innervation of the intestines and current knowledge on the role of the nervous system in colorectal cancer. Additionally, the therapeutic potential of these new insights is discussed. Abstract The role of the nervous system as a contributor in the tumor microenvironment has been recognized in different cancer types, including colorectal cancer (CRC). The gastrointestinal tract is a highly innervated organ system, which is not only innervated by the autonomic nervous system, but also contains an extensive nervous system of its own; the enteric nervous system (ENS). The ENS is important for gut function and homeostasis by regulating processes such as fluid absorption, blood flow, and gut motility. Dysfunction of the ENS has been linked with multiple gastrointestinal diseases, such as Hirschsprung disease and inflammatory bowel disease, and even with neurodegenerative disorders. How the extrinsic and intrinsic innervation of the gut contributes to CRC is not fully understood, although a mutual relationship between cancer cells and nerves has been described. Nerves enhance cancer progression through the secretion of neurotransmitters and neuropeptides, and cancer cells are capable of stimulating nerve growth. This review summarizes and discusses the nervous system innervation of the gastrointestinal tract and how it can influence carcinogenesis, and vice versa. Lastly, the therapeutic potential of these novel insights is discussed.
Collapse
|