1
|
Picart T, Gautheron A, Caredda C, Ray C, Mahieu-Williame L, Montcel B, Guyotat J. Fluorescence-Guided Surgical Techniques in Adult Diffuse Low-Grade Gliomas: State-of-the-Art and Emerging Techniques: A Systematic Review. Cancers (Basel) 2024; 16:2698. [PMID: 39123426 PMCID: PMC11311317 DOI: 10.3390/cancers16152698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- Cancer Research Centre of Lyon (CRCL) Inserm 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| | - Arthur Gautheron
- Laboratoire Hubert Curien UMR 5516, Institut d’Optique Graduate School, CNRS, Université Jean Monnet Saint-Etienne, 42023 Saint-Etienne, France;
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Charly Caredda
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Cédric Ray
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Laurent Mahieu-Williame
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Bruno Montcel
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| |
Collapse
|
2
|
Xu Y, On TJ, Abramov I, Restelli F, Belykh E, Mathis AM, Schlegel J, Hewer E, Pollo B, Maragkou T, Quint K, Porter RW, Smith KA, Preul MC. Intraoperative in vivo confocal endomicroscopy of the glioma margin: performance assessment of image interpretation by neurosurgeon users. Front Oncol 2024; 14:1389608. [PMID: 38841162 PMCID: PMC11151089 DOI: 10.3389/fonc.2024.1389608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/05/2024] [Indexed: 06/07/2024] Open
Abstract
Objectives Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.
Collapse
Affiliation(s)
- Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Thomas J. On
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Evgenii Belykh
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Andrea M. Mathis
- Department of Neurosurgery, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ekkehard Hewer
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Theoni Maragkou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | | | - Randall W. Porter
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Kris A. Smith
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
3
|
Byun YH, Won JK, Hong DH, Kang H, Kim JH, Yu MO, Kim MS, Kim YH, Park KJ, Jeong MJ, Hwang K, Kong DS, Park CK, Kang SH. A prospective multicenter assessor blinded pilot study using confocal laser endomicroscopy for intraoperative brain tumor diagnosis. Sci Rep 2024; 14:6784. [PMID: 38514670 PMCID: PMC10957981 DOI: 10.1038/s41598-024-52494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024] Open
Abstract
In this multi-center, assessor-blinded pilot study, the diagnostic efficacy of cCeLL-Ex vivo, a second-generation confocal laser endomicroscopy (CLE), was compared against the gold standard frozen section analysis for intraoperative brain tumor diagnosis. The study was conducted across three tertiary medical institutions in the Republic of Korea. Biopsy samples from newly diagnosed brain tumor patients were categorized based on location and divided for permanent section analysis, frozen section analysis, and cCeLL-Ex vivo imaging. Of the 74 samples from 55 patients, the majority were from the tumor core (74.3%). cCeLL-Ex vivo exhibited a relatively higher diagnostic accuracy (89.2%) than frozen section analysis (86.5%), with both methods showing a sensitivity of 92.2%. cCeLL-Ex vivo also demonstrated higher specificity (70% vs. 50%), positive predictive value (PPV) (95.2% vs. 92.2%), and negative predictive value (NPV) (58.3% vs. 50%). Furthermore, the time from sample preparation to diagnosis was notably shorter with cCeLL-Ex vivo (13 min 17 s) compared to frozen section analysis (28 min 28 s) (p-value < 0.005). These findings underscore cCeLL-Ex vivo's potential as a supplementary tool for intraoperative brain tumor diagnosis, with future studies anticipated to further validate its clinical utility.
Collapse
Affiliation(s)
- Yoon Hwan Byun
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duk Hyun Hong
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-Do, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mi Ok Yu
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | | | | | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Radtke K, Schulz-Schaeffer WJ, Oertel J. Confocal laser endomicroscopy in glial tumors-a histomorphological analysis. Neurosurg Rev 2024; 47:65. [PMID: 38265724 PMCID: PMC10808457 DOI: 10.1007/s10143-024-02286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors. MATERIAL AND METHODS One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature. RESULTS All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas (p < 0.002). CONCLUSION Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.
Collapse
Affiliation(s)
- Karen Radtke
- Klinik für Neurochirurgie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany
| | - Walter J Schulz-Schaeffer
- Institut für Neuropathologie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany
| | - Joachim Oertel
- Klinik für Neurochirurgie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany.
| |
Collapse
|
5
|
Au M, Almeida-Magana R, Al-Hammouri T, Haider A, Shaw G. Accuracy of Ex-vivo Fluorescence Confocal Microscopy in Margin Assessment of Solid Tumors: A Systematic Review. J Histochem Cytochem 2023; 71:661-674. [PMID: 37968920 PMCID: PMC10691410 DOI: 10.1369/00221554231212948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
Fluorescence confocal microscopy (FCM) is a novel technology that enables rapid high-resolution digital imaging of non-formalin-fixed tissue specimens and offers real-time positive surgical margin identification. In this systematic review, we evaluated the accuracy metrics of ex vivo FCM for intraoperative margin assessment of different tumor types. A systematic search of MEDLINE via PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and Scopus was performed for relevant papers (PROSPERO ID: CRD42022372558). We included 14 studies evaluating four types of microscopes in six different tumor types, including breast, prostate, central nervous system, kidney, bladder, and conjunctival tumors. Using the Quality Assessment of Diagnostic Accuracy Studies tool, we identified a high risk of bias in patient selection (21%) and index test (36%) of the included studies. Overall, we found that FCM has good accuracy metrics in all tumor types, with high sensitivity and specificity (>80%) and almost perfect concordance (>90%) against final pathology results. Despite these promising findings, the quality of the available evidence and bias concerns highlight the need for adequately designed studies to further define the role of ex vivo FCM in replacing the frozen section as the tool of choice for intraoperative margin assessment.
Collapse
Affiliation(s)
- Matthew Au
- Department of Targeted Intervention, University College London, London, United Kingdom, University College London Hospitals, London, United Kingdom
| | - Ricardo Almeida-Magana
- Department of Targeted Intervention, University College London, London, United Kingdom, University College London Hospitals, London, United Kingdom
| | - Tarek Al-Hammouri
- Department of Urology, University College London Hospitals, London, United Kingdom
| | - Aiman Haider
- Department of Pathology, University College London Hospitals, London, United Kingdom
| | - Greg Shaw
- Department of Targeted Intervention, University College London, London, United Kingdom, University College London Hospitals, London, United Kingdom
- Department of Urology, University College London Hospitals, London, United Kingdom
| |
Collapse
|
6
|
García-Milán V, Franco A, Zvezdanova ME, Marcos S, Martin-Laez R, Moreno F, Velasquez C, Fernandez-Luna JL. Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor. BIOSENSORS 2023; 13:591. [PMID: 37366956 DOI: 10.3390/bios13060591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
In glioblastoma (GBM) patients, maximal safe resection remains a challenge today due to its invasiveness and diffuse parenchymal infiltration. In this context, plasmonic biosensors could potentially help to discriminate tumor tissue from peritumoral parenchyma based on differences in their optical properties. A nanostructured gold biosensor was used ex vivo to identify tumor tissue in a prospective series of 35 GBM patients who underwent surgical treatment. For each patient, two paired samples, tumor and peritumoral tissue, were extracted. Then, the imprint left by each sample on the surface of the biosensor was individually analyzed, obtaining the difference between their refractive indices. The tumor and non-tumor origins of each tissue were assessed by histopathological analysis. The refractive index (RI) values obtained by analyzing the imprint of the tissue were significantly lower (p = 0.0047) in the peritumoral samples (1.341, Interquartile Range (IQR) 1.339-1.349) compared with the tumor samples (1.350, IQR 1.344-1.363). The ROC (receiver operating characteristic) curve showed the capacity of the biosensor to discriminate between both tissues (area under the curve, 0.8779, p < 0.0001). The Youden index provided an optimal RI cut-off point of 0.003. The sensitivity and specificity of the biosensor were 81% and 80%, respectively. Overall, the plasmonic-based nanostructured biosensor is a label-free system with the potential to be used for real-time intraoperative discrimination between tumor and peritumoral tissue in patients with GBM.
Collapse
Affiliation(s)
- Víctor García-Milán
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Alfredo Franco
- Department of Applied Physics, Faculty of Sciences, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
| | | | - Sara Marcos
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Rubén Martin-Laez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Fernando Moreno
- Department of Applied Physics, Faculty of Sciences, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
| | - Carlos Velasquez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
- Department of Anatomy and Cell Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - José L Fernandez-Luna
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
- Genetics Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| |
Collapse
|
7
|
Abramov I, Park MT, Belykh E, Dru AB, Xu Y, Gooldy TC, Scherschinski L, Farber SH, Little AS, Porter RW, Smith KA, Lawton MT, Eschbacher JM, Preul MC. Intraoperative confocal laser endomicroscopy: prospective in vivo feasibility study of a clinical-grade system for brain tumors. J Neurosurg 2023; 138:587-597. [PMID: 35901698 DOI: 10.3171/2022.5.jns2282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The authors evaluated the feasibility of using the first clinical-grade confocal laser endomicroscopy (CLE) system using fluorescein sodium for intraoperative in vivo imaging of brain tumors. METHODS A CLE system cleared by the FDA was used in 30 prospectively enrolled patients with 31 brain tumors (13 gliomas, 5 meningiomas, 6 other primary tumors, 3 metastases, and 4 reactive brain tissue). A neuropathologist classified CLE images as interpretable or noninterpretable. Images were compared with corresponding frozen and permanent histology sections, with image correlation to biopsy location using neuronavigation. The specificities and sensitivities of CLE images and frozen sections were calculated using permanent histological sections as the standard for comparison. A recently developed surgical telepathology software platform was used in 11 cases to provide real-time intraoperative consultation with a neuropathologist. RESULTS Overall, 10,713 CLE images from 335 regions of interest were acquired. The mean duration of the use of the CLE system was 7 minutes (range 3-18 minutes). Interpretable CLE images were obtained in all cases. The first interpretable image was acquired within a mean of 6 (SD 10) images and within the first 5 (SD 13) seconds of imaging; 4896 images (46%) were interpretable. Interpretable image acquisition was positively correlated with study progression, number of cases per surgeon, cumulative length of CLE time, and CLE time per case (p ≤ 0.01). The diagnostic accuracy, sensitivity, and specificity of CLE compared with frozen sections were 94%, 94%, and 100%, respectively, and the diagnostic accuracy, sensitivity, and specificity of CLE compared with permanent histological sections were 92%, 90%, and 94%, respectively. No difference was observed between lesion types for the time to first interpretable image (p = 0.35). Deeply located lesions were associated with a higher percentage of interpretable images than superficial lesions (p = 0.02). The study met the primary end points, confirming the safety and feasibility and acquisition of noninvasive digital biopsies in all cases. The study met the secondary end points for the duration of CLE use necessary to obtain interpretable images. A neuropathologist could interpret the CLE images in 29 (97%) of 30 cases. CONCLUSIONS The clinical-grade CLE system allows in vivo, intraoperative, high-resolution cellular visualization of tissue microstructure and identification of lesional tissue patterns in real time, without the need for tissue preparation.
Collapse
Affiliation(s)
- Irakliy Abramov
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Marian T Park
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Evgenii Belykh
- 4Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Alexander B Dru
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Yuan Xu
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Timothy C Gooldy
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Lea Scherschinski
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - S Harrison Farber
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Andrew S Little
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Randall W Porter
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Kris A Smith
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Michael T Lawton
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Jennifer M Eschbacher
- 3Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Mark C Preul
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| |
Collapse
|
8
|
Development, Implementation and Application of Confocal Laser Endomicroscopy in Brain, Head and Neck Surgery—A Review. Diagnostics (Basel) 2022; 12:diagnostics12112697. [PMID: 36359540 PMCID: PMC9689276 DOI: 10.3390/diagnostics12112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
When we talk about visualization methods in surgery, it is important to mention that the diagnosis of tumors and how we define tumor borders intraoperatively in a correct way are two main things that would not be possible to achieve without this grand variety of visualization methods we have at our disposal nowadays. In addition, histopathology also plays a very important role, and its importance cannot be neglected either. Some biopsy specimens, e.g., frozen sections, are examined by a histopathologist and lead to tumor diagnosis and the definition of its borders. Furthermore, surgical resection is a very important point when it comes to prognosis and life survival. Confocal laser endomicroscopy (CLE) is an imaging technique that provides microscopic information on the tissue in real time. CLE of disorders, such as head, neck and brain tumors, has only recently been suggested to contribute to both immediate tumor characterization and detection. It can be used as an additional tool for surgical biopsies during biopsy or surgical procedures and for inspection of resection margins during surgery. In this review, we analyze the development, implementation, advantages and disadvantages as well as the future directions of this technique in neurosurgical and otorhinolaryngological disciplines.
Collapse
|
9
|
Restelli F, Mathis AM, Höhne J, Mazzapicchi E, Acerbi F, Pollo B, Quint K. Confocal laser imaging in neurosurgery: A comprehensive review of sodium fluorescein-based CONVIVO preclinical and clinical applications. Front Oncol 2022; 12:998384. [PMID: 36263218 PMCID: PMC9574261 DOI: 10.3389/fonc.2022.998384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Given the established direct correlation that exists among extent of resection and postoperative survival in brain tumors, obtaining complete resections is of primary importance. Apart from the various technological advancements that have been introduced in current clinical practice, histopathological study still remains the gold-standard for definitive diagnosis. Frozen section analysis still represents the most rapid and used intraoperative histopathological method that allows for an intraoperative differential diagnosis. Nevertheless, such technique owes some intrinsic limitations that limit its overall potential in obtaining real-time diagnosis during surgery. In this context, confocal laser technology has been suggested as a promising method to have near real-time intraoperative histological images in neurosurgery, thanks to the results of various studies performed in other non-neurosurgical fields. Still far to be routinely implemented in current neurosurgical practice, pertinent literature is growing quickly, and various reports have recently demonstrated the utility of this technology in both preclinical and clinical settings in identifying brain tumors, microvasculature, and tumor margins, when coupled to the intravenous administration of sodium fluorescein. Specifically in neurosurgery, among different available devices, the ZEISS CONVIVO system probably boasts the most recent and largest number of experimental studies assessing its usefulness, which has been confirmed for identifying brain tumors, offering a diagnosis and distinguishing between healthy and pathologic tissue, and studying brain vessels. The main objective of this systematic review is to present a state-of-the-art summary on sodium fluorescein-based preclinical and clinical applications of the ZEISS CONVIVO in neurosurgery.
Collapse
Affiliation(s)
- Francesco Restelli
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Maria Mathis
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julius Höhne
- Department of Neurosurgery, Universitätsklinikum, Regensburg, Germany
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Acerbi,
| | - Bianca Pollo
- Department of Neuropathology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
10
|
Park MT, Abramov I, Gooldy TC, Smith KA, Porter RW, Little AS, Lawton MT, Eschbacher JM, Preul MC. Introduction of In Vivo Confocal Laser Endomicroscopy and Real-Time Telepathology for Remote Intraoperative Neurosurgery-Pathology Consultation. Oper Neurosurg (Hagerstown) 2022; 23:261-267. [PMID: 35972091 DOI: 10.1227/ons.0000000000000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Precise communication between neurosurgeons and pathologists is crucial for optimizing patient care, especially for intraoperative diagnoses. Confocal laser endomicroscopy (CLE) combined with a telepathology software platform (TSP) provides a novel venue for neurosurgeons and pathologists to review CLE images and converse intraoperatively in real-time. OBJECTIVE To describe the feasibility of integrating CLE and a TSP in the surgical workflow for real-time review of in vivo digital fluorescence tissue imaging in 3 patients with intracranial tumors. METHODS Although the neurosurgeon used the CLE probe to generate fluorescence images of histoarchitecture within the operative field that were displayed on monitors in the operating room, the pathologist simultaneously remotely viewed the CLE images. The neurosurgeon and pathologist discussed in real-time the histological structures of intraoperative imaging locations. RESULTS The neurosurgeon placed the CLE probe at various locations on and around the tumor, in the surgical resection bed, and on surrounding brain tissue with communication through the TSP. The neurosurgeon oriented the pathologist to the location of the CLE, and the pathologist and neurosurgeon discussed the CLE images in real-time. The TSP and CLE were integrated successfully and rapidly in the operating room in all 3 cases. No patient had perioperative complications. CONCLUSION Two novel digital neurosurgical cellular imaging technologies were combined with intraoperative neurosurgeon-pathologist communication to guide the identification of abnormal histoarchitectural tissue features in real-time. CLE with the TSP may allow rapid decision-making during tumor resection that may hold significant advantages over the frozen section process and surgical workflow in general.
Collapse
Affiliation(s)
- Marian T Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Timothy C Gooldy
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Kris A Smith
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Randall W Porter
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Andrew S Little
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael T Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
11
|
Xu Y, Abramov I, Belykh E, Mignucci-Jiménez G, Park MT, Eschbacher JM, Preul MC. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging. Front Oncol 2022; 12:979748. [PMID: 36091140 PMCID: PMC9451600 DOI: 10.3389/fonc.2022.979748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters – brightness and contrast – were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.
Collapse
Affiliation(s)
- Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Giancarlo Mignucci-Jiménez
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Marian T. Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- *Correspondence: Mark C. Preul,
| |
Collapse
|
12
|
Abramov I, Park MT, Gooldy TC, Xu Y, Lawton MT, Little AS, Porter RW, Smith KA, Eschbacher JM, Preul MC. Real-time intraoperative surgical telepathology using confocal laser endomicroscopy. Neurosurg Focus 2022; 52:E9. [PMID: 35921184 DOI: 10.3171/2022.3.focus2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Communication between neurosurgeons and pathologists is mandatory for intraoperative decision-making and optimization of resection, especially for invasive masses. Handheld confocal laser endomicroscopy (CLE) technology provides in vivo intraoperative visualization of tissue histoarchitecture at cellular resolution. The authors evaluated the feasibility of using an innovative surgical telepathology software platform (TSP) to establish real-time, on-the-fly remote communication between the neurosurgeon using CLE and the pathologist. METHODS CLE and a TSP were integrated into the surgical workflow for 11 patients with brain masses (6 patients with gliomas, 3 with other primary tumors, 1 with metastasis, and 1 with reactive brain tissue). Neurosurgeons used CLE to generate video-flow images of the operative field that were displayed on monitors in the operating room. The pathologist simultaneously viewed video-flow CLE imaging using a digital tablet and communicated with the surgeon while physically located outside the operating room (1 pathologist was in another state, 4 were at home, and 6 were elsewhere in the hospital). Interpretations of the still CLE images and video-flow CLE imaging were compared with the findings on the corresponding frozen and permanent H&E histology sections. RESULTS Overall, 24 optical biopsies were acquired with mean ± SD 2 ± 1 optical biopsies per case. The mean duration of CLE system use was 1 ± 0.3 minutes/case and 0.25 ± 0.23 seconds/optical biopsy. The first image with identifiable histopathological features was acquired within 6 ± 0.1 seconds. Frozen sections were processed within 23 ± 2.8 minutes, which was significantly longer than CLE usage (p < 0.001). Video-flow CLE was used to correctly interpret tissue histoarchitecture in 96% of optical biopsies, which was substantially higher than the accuracy of using still CLE images (63%) (p = 0.005). CONCLUSIONS When CLE is employed in tandem with a TSP, neurosurgeons and pathologists can view and interpret CLE images remotely and in real time without the need to biopsy tissue. A TSP allowed neurosurgeons to receive real-time feedback on the optically interrogated tissue microstructure, thereby improving cross-functional communication and intraoperative decision-making and resulting in significant workflow advantages over the use of frozen section analysis.
Collapse
Affiliation(s)
- Irakliy Abramov
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Marian T Park
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | | | - Yuan Xu
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | | | | | | | | | - Jennifer M Eschbacher
- 3Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Mark C Preul
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| |
Collapse
|
13
|
Socio-Organizational Impact of Confocal Laser Endomicroscopy in Neurosurgery and Neuropathology: Results from a Process Analysis and Expert Survey. Diagnostics (Basel) 2021; 11:diagnostics11112128. [PMID: 34829475 PMCID: PMC8623423 DOI: 10.3390/diagnostics11112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
During brain tumor resection surgery, it is essential to determine the tumor borders as the extent of resection is important for post-operative patient survival. The current process of removing a tissue sample for frozen section analysis has several shortcomings that might be overcome by confocal laser endomicroscopy (CLE). CLE is a promising new technology enabling the digital in vivo visualization of tissue structures in near real-time. Research on the socio-organizational impact of introducing this new methodology to routine care in neurosurgery and neuropathology is scarce. We analyzed a potential clinical workflow employing CLE by comparing it to the current process. Additionally, a small expert survey was conducted to collect data on the opinion of clinical staff working with CLE. While CLE can contribute to a workload reduction for neuropathologists and enable a shorter process and a more efficient use of resources, the effort for neurosurgeons and surgery assistants might increase. Experts agree that CLE offers huge potential for better diagnosis and therapy but also see challenges, especially due to the current state of experimental use, including a risk for misinterpretations and the need for special training. Future studies will show whether CLE can become part of routine care.
Collapse
|
14
|
Abramov I, Dru AB, Belykh E, Park MT, Bardonova L, Preul MC. Redosing of Fluorescein Sodium Improves Image Interpretation During Intraoperative Ex Vivo Confocal Laser Endomicroscopy of Brain Tumors. Front Oncol 2021; 11:668661. [PMID: 34660258 PMCID: PMC8514872 DOI: 10.3389/fonc.2021.668661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Fluorescein sodium (FNa) is a fluorescence agent used with a wide-field operating microscope for intraoperative guidance and with confocal laser endomicroscopy (CLE) to evaluate brain tissue. Susceptibility of FNa to degradation over time may affect CLE image quality during prolonged surgeries. This study describes improved characteristics of CLE images after intraoperative redosing with FNa. Methods A retrospective analysis was performed using CLE images obtained ex vivo from samples obtained during tumor resections with FNa-based fluorescence guidance with a wide-field operating microscope. The comparison groups included CLE images acquired after FNa redosing (redose imaging group), images from the same patients acquired after the initial FNa dose (initial-dose imaging group), and images from patients in whom redosing was not used (single-dose imaging group). A detailed assessment of image quality and interpretation regarding different FNa dosage and timing of imaging after FNa administration was conducted for all comparison groups. Results The brightest and most contrasting images were observed in the redose group compared to the initial-dose and single-dose groups (P<0.001). The decay of FNa signal negatively correlated with brightness (rho = -0.52, P<0.001) and contrast (rho = -0.57, P<0.001). Different doses of FNa did not significantly affect the brightness (P=0.15) or contrast (P=0.09) in CLE images. As the mean timing of imaging increased, the percentage of accurately diagnosed images decreased (P=0.03). Conclusions The decay of the FNa signal is directly associated with image brightness and contrast. The qualitative interpretation scores of images were highest for the FNa redose imaging group. Redosing with FNa to improve the utility of CLE imaging should be considered a safe and beneficial strategy during prolonged surgeries.
Collapse
Affiliation(s)
- Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander B Dru
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Marian T Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Liudmila Bardonova
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
15
|
Reichert D, Erkkilae MT, Gesperger J, Wadiura LI, Lang A, Roetzer T, Woehrer A, Andreana M, Unterhuber A, Wilzbach M, Hauger C, Drexler W, Kiesel B, Widhalm G, Leitgeb RA. Fluorescence Lifetime Imaging and Spectroscopic Co-Validation for Protoporphyrin IX-Guided Tumor Visualization in Neurosurgery. Front Oncol 2021; 11:741303. [PMID: 34595120 PMCID: PMC8476921 DOI: 10.3389/fonc.2021.741303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maximal safe resection is a key strategy for improving patient prognosis in the management of brain tumors. Intraoperative fluorescence guidance has emerged as a standard in the surgery of high-grade gliomas. The administration of 5-aminolevulinic acid prior to surgery induces tumor-specific accumulation of protoporphyrin IX, which emits red fluorescence under blue-light illumination. The technology, however, is substantially limited for low-grade gliomas and weakly tumor-infiltrated brain, where low protoporphyrin IX concentrations are outweighed by tissue autofluorescence. In this context, fluorescence lifetime imaging has shown promise to distinguish spectrally overlapping fluorophores. We integrated frequency-domain fluorescence lifetime imaging in a surgical microscope and combined it with spatially registered fluorescence spectroscopy, which can be considered a research benchmark for sensitive protoporphyrin IX detection. Fluorescence lifetime maps and spectra were acquired for a representative set of fresh ex-vivo brain tumor specimens (low-grade gliomas n = 15, high-grade gliomas n = 80, meningiomas n = 41, and metastases n = 35). Combining the fluorescence lifetime with fluorescence spectra unveiled how weak protoporphyrin IX accumulations increased the lifetime respective to tissue autofluorescence. Infiltration zones (4.1ns ± 1.8ns, p = 0.017) and core tumor areas (4.8ns ± 1.3ns, p = 0.040) of low-grade gliomas were significantly distinguishable from non-pathologic tissue (1.6ns ± 0.5ns). Similarly, fluorescence lifetimes for infiltrated and reactive tissue as well as necrotic and core tumor areas were increased for high-grade gliomas and metastasis. Meningioma tumor specimens showed strongly increased lifetimes (12.2ns ± 2.5ns, p = 0.005). Our results emphasize the potential of fluorescence lifetime imaging to optimize maximal safe resection in brain tumors in future and highlight its potential toward clinical translation.
Collapse
Affiliation(s)
- David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lisa I Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Wilzbach
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Christoph Hauger
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Belykh E, Onaka NR, Zhao X, Abramov I, Eschbacher JM, Nakaji P, Preul MC. High-Dose Fluorescein Reveals Unusual Confocal Endomicroscope Imaging of Low-Grade Glioma. Front Neurol 2021; 12:668656. [PMID: 34335443 PMCID: PMC8322731 DOI: 10.3389/fneur.2021.668656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Fluorescence-guided brain tumor surgery using fluorescein sodium (FNa) for contrast is effective in high-grade gliomas. However, the effectiveness of this technique for visualizing noncontrast-enhancing and low-grade gliomas is unknown. This report is the first documented case of the concurrent use of wide-field fluorescence-guided surgery and confocal laser endomicroscopy (CLE) with high-dose FNa (40 mg/kg) for intraoperative visualization of tumor tissue cellularity in a nonenhancing glioma. Case Description: A patient underwent fluorescence-guided surgery for a left frontal lobe mass without contrast enhancement on magnetic resonance imaging. The patient received 40 mg/kg FNa intravenously at the induction of anesthesia. Surgery was performed under visualization with a Yellow 560 filter and white-light wide-field imaging. Intraoperative CLE produced high-quality images of the lesion 1.5 h after FNa injection. Frozen-section analysis demonstrated findings comparable to those of intraoperative CLE visualization and consistent with World Health Organization (WHO) glioma grades II–III. The patient recovered without complications. Analysis of the permanent histologic sections identified the tumor as an anaplastic oligodendroglioma, IDH-mutant, 1p/19q co-deleted, consistent with WHO grade III because of discrete foci of hypercellularity and increased mitotic figures, but large regions of the lesion were low grade. Conclusions: The use of high-dose FNa in this patient with a nonenhancing borderline low-grade/high-grade glioma produced actionable wide-field fluorescence imaging using the operating microscope and improved CLE visualization of tumor cellularity. Higher doses of FNa for intraoperative CLE imaging and possible simultaneous wide-field fluorescence surgical guidance in nonenhancing gliomas merit further investigation.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Naomi R Onaka
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Irakliy Abramov
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
18
|
Dittberner A, Ziadat R, Hoffmann F, Pertzborn D, Gassler N, Guntinas-Lichius O. Fluorescein-Guided Panendoscopy for Head and Neck Cancer Using Handheld Probe-Based Confocal Laser Endomicroscopy: A Pilot Study. Front Oncol 2021; 11:671880. [PMID: 34195078 PMCID: PMC8236705 DOI: 10.3389/fonc.2021.671880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
Background White-light endoscopy and microscopy combined with histological analysis is currently the mainstay for intraprocedural tissue diagnosis during panendoscopy for head and neck cancer. However, taking biopsies leads to selection bias, ex vivo histopathology is time-consuming, and the advantages of in-vivo intraoperative decision making cannot be used. Confocal laser endomicroscopy (CLE) has the potential for a rapid and histological assessment in the head and neck operating room. Methods Between July 2019 and January 2020, 13 patients (69% male, median age: 61 years) with newly diagnosed head and neck cancer (T3/T4: 46%) underwent fluorescein-guided panendoscopy. CLE was performed from both the tumor and margins followed by biopsies from the CLE spots. The biopsies were processed for histopathology. The CLE images were ex vivo classified blinded with a CLE cancer score (DOC score). The classification was compared to the histopathological results. Results Median additional time for CLE during surgery was 9 min. A total of 2,565 CLE images were taken (median CLE images: 178 per patient; 68 per biopsy; evaluable 87.5%). The concordance between histopathology and CLE images varied between the patients from 82.5 to 98.6%. The sensitivity, specificity, and accuracy to detect cancer using the classified CLE images was 87.5, 80.0, and 84.6%, respectively. The positive and negative predictive values were 87.0 and 80.0%, respectively. Conclusion CLE with a rigid handheld probe is easy and intuitive to handle during panendoscopy. As next step, the high accuracy of ex vivo CLE image classification for tumor tissue suggests the validation of CLE in vivo. This will evolve CLE as a complementary tool for in vivo intraoperative diagnosis during panendoscopy.
Collapse
Affiliation(s)
- Andreas Dittberner
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Rafat Ziadat
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - David Pertzborn
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
19
|
Wang LM, Banu MA, Canoll P, Bruce JN. Rationale and Clinical Implications of Fluorescein-Guided Supramarginal Resection in Newly Diagnosed High-Grade Glioma. Front Oncol 2021; 11:666734. [PMID: 34123831 PMCID: PMC8187787 DOI: 10.3389/fonc.2021.666734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Current standard of care for glioblastoma is surgical resection followed by temozolomide chemotherapy and radiation. Recent studies have demonstrated that >95% extent of resection is associated with better outcomes, including prolonged progression-free and overall survival. The diffusely infiltrative pattern of growth in gliomas results in microscopic extension of tumor cells into surrounding brain parenchyma that makes complete resection unattainable. The historical goal of surgical management has therefore been maximal safe resection, traditionally guided by MRI and defined as removal of all contrast-enhancing tumor. Optimization of surgical resection has led to the concept of supramarginal resection, or removal beyond the contrast-enhancing region on MRI. This strategy of extending the cytoreductive goal targets a tumor region thought to be important in the recurrence or progression of disease as well as resistance to systemic and local treatment. This approach must be balanced against the risk of impacting eloquent regions of brain and causing permanent neurologic deficit, an important factor affecting overall survival. Over the years, fluorescent agents such as fluorescein sodium have been explored as a means of more reliably delineating the boundary between tumor core, tumor-infiltrated brain, and surrounding cortex. Here we examine the rationale behind extending resection into the infiltrative tumor margins, review the current literature surrounding the use of fluorescein in supramarginal resection of gliomas, discuss the experience of our own institution in utilizing fluorescein to maximize glioma extent of resection, and assess the clinical implications of this treatment strategy.
Collapse
Affiliation(s)
- Linda M Wang
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Matei A Banu
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Peter Canoll
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jeffrey N Bruce
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
20
|
Ziebart A, Stadniczuk D, Roos V, Ratliff M, von Deimling A, Hänggi D, Enders F. Deep Neural Network for Differentiation of Brain Tumor Tissue Displayed by Confocal Laser Endomicroscopy. Front Oncol 2021; 11:668273. [PMID: 34046358 PMCID: PMC8147727 DOI: 10.3389/fonc.2021.668273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/09/2021] [Indexed: 01/31/2023] Open
Abstract
Background Reliable on site classification of resected tumor specimens remains a challenge. Implementation of high-resolution confocal laser endoscopic techniques (CLEs) during fluorescence-guided brain tumor surgery is a new tool for intraoperative tumor tissue visualization. To overcome observer dependent errors, we aimed to predict tumor type by applying a deep learning model to image data obtained by CLE. Methods Human brain tumor specimens from 25 patients with brain metastasis, glioblastoma, and meningioma were evaluated within this study. In addition to routine histopathological analysis, tissue samples were stained with fluorescein ex vivo and analyzed with CLE. We trained two convolutional neural networks and built a predictive level for the outputs. Results Multiple CLE images were obtained from each specimen with a total number of 13,972 fluorescein based images. Test accuracy of 90.9% was achieved after applying a two-class prediction for glioblastomas and brain metastases with an area under the curve (AUC) value of 0.92. For three class predictions, our model achieved a ratio of correct predicted label of 85.8% in the test set, which was confirmed with five-fold cross validation, without definition of confidence. Applying a confidence rate of 0.999 increased the prediction accuracy to 98.6% when images with substantial artifacts were excluded before the analysis. 36.3% of total images met the output criteria. Conclusions We trained a residual network model that allows automated, on site analysis of resected tumor specimens based on CLE image datasets. Further in vivo studies are required to assess the clinical benefit CLE can have.
Collapse
Affiliation(s)
- Andreas Ziebart
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Denis Stadniczuk
- Department of Software Engineering, Clevertech Inc., New York, NY, United States
| | - Veronika Roos
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Frederik Enders
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Restelli F, Pollo B, Vetrano IG, Cabras S, Broggi M, Schiariti M, Falco J, de Laurentis C, Raccuia G, Ferroli P, Acerbi F. Confocal Laser Microscopy in Neurosurgery: State of the Art of Actual Clinical Applications. J Clin Med 2021; 10:jcm10092035. [PMID: 34068592 PMCID: PMC8126060 DOI: 10.3390/jcm10092035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Achievement of complete resections is of utmost importance in brain tumor surgery, due to the established correlation among extent of resection and postoperative survival. Various tools have recently been included in current clinical practice aiming to more complete resections, such as neuronavigation and fluorescent-aided techniques, histopathological analysis still remains the gold-standard for diagnosis, with frozen section as the most used, rapid and precise intraoperative histopathological method that permits an intraoperative differential diagnosis. Unfortunately, due to the various limitations linked to this technique, it is still unsatisfactorily for obtaining real-time intraoperative diagnosis. Confocal laser technology has been recently suggested as a promising method to obtain near real-time intraoperative histological data in neurosurgery, due to its established use in other non-neurosurgical fields. Still far to be widely implemented in current neurosurgical clinical practice, this technology was initially studied in preclinical experiences confirming its utility in identifying brain tumors, microvasculature and tumor margins. Hence, ex vivo and in vivo clinical studies evaluated the possibility with this technology of identifying and classifying brain neoplasms, discerning between normal and pathologic tissue, showing very promising results. This systematic review has the main objective of presenting a state-of-the-art summary on actual clinical applications of confocal laser imaging in neurosurgical practice.
Collapse
Affiliation(s)
- Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Ignazio Gaspare Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Samuele Cabras
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Camilla de Laurentis
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Gabriella Raccuia
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
- Correspondence: ; Tel.: +39-022-3932-309
| |
Collapse
|