1
|
Cai F, Liu L, Bo Y, Yan W, Tao X, Peng Y, Zhang Z, Liao Q, Yi Y. LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism. BMC Cancer 2024; 24:166. [PMID: 38308235 PMCID: PMC10835925 DOI: 10.1186/s12885-024-11901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor, and its dysregulated lipid metabolism is associated with tumorigenesis and unfavorable prognosis. Interestingly, long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of lipid metabolism, exerting notable impacts on tumor proliferation. Nevertheless, the involvement of RPARP-AS1, a novel lipid metabolism-associated lncRNA, remains unexplored in the context of OS. This study aims to identify functionally relevant lncRNAs impacting OS proliferation and lipid metabolism and seeks to shed light on the upstream regulatory mechanisms governing lipogenic enzyme activity. Based on comprehensive bioinformatic analysis and the establishment of a risk model, we identified seven lncRNAs significantly associated with clinical characteristics and lipid metabolism-related genes in patients with OS. Among these, RPARP-AS1 was selected for in-depth investigation regarding its roles in OS proliferation and lipid metabolism. Experimental techniques including RT-qPCR, Western blot, cell viability assay, assessment, and quantification of free fatty acids (FFAs) and triglycerides (TGs) were utilized to elucidate the functional significance of RPARP-AS1 in OS cells and validate its effects on lipid metabolism. Manipulation of RPARP-AS1 expression via ectopic expression or siRNA-mediated knockdown led to alterations in epithelial-mesenchymal transition (EMT) and expression of apoptosis-associated proteins, thereby influencing OS cell proliferation and apoptosis. Mechanistically, RPARP-AS1 was found to augment the expression of key lipogenic enzymes (FABP4, MAGL, and SCD1) and potentially modulate the Akt/mTOR pathway, thereby contributing to lipid metabolism (involving alterations in FFA and TG levels) in OS cells. Collectively, our findings establish RPARP-AS1 as a novel oncogene in OS cells and suggest its role in fostering tumor growth through the enhancement of lipid metabolism.
Collapse
Affiliation(s)
- Feng Cai
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
- Department of Orthopedics, The First Hospital of Nanchang, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Luhua Liu
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yuan Bo
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Wenjing Yan
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Xuchang Tao
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yuanxiang Peng
- Department of Orthopedics, The First Hospital of Nanchang, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Zhiping Zhang
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Qi Liao
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yangyan Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330008, P.R. China.
| |
Collapse
|
2
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
3
|
Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients. Curr Aging Sci 2024; 17:5-15. [PMID: 36733201 DOI: 10.2174/1874609816666230202101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.
Collapse
Affiliation(s)
- Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Yasodha Kesavan
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
4
|
Li Q, Sun H, Liu S, Tang J, Liu S, Yin P, Mi Q, Liu J, yu L, Bi Y. Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway. J Ginseng Res 2023; 47:645-653. [PMID: 37720575 PMCID: PMC10499649 DOI: 10.1016/j.jgr.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.
Collapse
Affiliation(s)
| | | | - Shiwei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jinxin Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Shengnan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lei yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Zhang Z, Wang X. Roles of long non-coding RNAs in digestive tract cancer and their clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:451-459. [PMID: 37643979 PMCID: PMC10495243 DOI: 10.3724/zdxbyxb-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) are strongly related to the occurrence and development of digestive tract cancer in human. Firstly, lncRNAs target and regulate the expression of downstream cancer genes to affect the growth, metastasis, apoptosis, metabolism and immune escape of cancer cells. Secondly, lncRNAs are considered to be important regulating factors for lipid metabolism in cancer, which is related to signaling pathways of adipogenesis and involved in the occurrence and development of digestive tract cancer. Finally, lncRNAs have application value in the diagnosis and treatment of digestive tract cancer. For example, lncRNAMALAT1 has been reported as a target for diagnosis and treatment of hepatocellular carcinoma. This article reviews current progress on the regulatory role of lncRNAs in digestive tract cancer, to provide references for the research and clinical application in the prevention and treatment of digestive tract cancer.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Medicine, Xizang Minzu University, Key Laboratory of High Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang 712082, Shaanxi Province, China.
| | - Xiaoping Wang
- School of Medicine, Xizang Minzu University, Key Laboratory of High Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang 712082, Shaanxi Province, China.
| |
Collapse
|
6
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
7
|
Liao L, Zhang F, Zhuo Z, Huang C, Zhang X, Liu R, Gao B, Ding S. Regulation of Fatty Acid Metabolism and Inhibition of Colorectal Cancer Progression by Erchen Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9557720. [PMID: 37078067 PMCID: PMC10110375 DOI: 10.1155/2023/9557720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Erchen decoction (ECD) is a traditional Chinese prescription widely used in the treatment of various diseases such as obesity, fatty liver, diabetes, and hypertension. In this study, we investigated the effect of ECD on fatty acid metabolism in a colorectal cancer (CRC) mouse model fed a high-fat (HF) diet. The HF-CRC mouse model was established by azoxymethane (AOM)/dextran sulphate sodium (DSS) combined with a high-fat diet. Mice were then gavaged with ECD. Change in the body weight was recorded every two weeks for 26 weeks. Changes in blood glucose (GLU), total cholesterol (TC), total triglycerides (TG), and C-reactive protein (CRP) were measured. Colorectal tissues were collected to observe changes in colorectal length and tumorigenesis. Hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and inflammatory markers. Fatty acids and the expression of related genes in colorectal tissues were also studied. ECD gavage inhibited HF-induced weight gain. CRC induction and HF diet intake resulted in increased GLU, TC, TG, and CRP, where ECD gavage reduced these elevated indicators. ECD gavage also increased colorectal length and inhibited tumorigenesis. HE staining revealed that ECD gavage suppressed inflammatory infiltration of colorectal tissues. ECD gavage suppressed the fatty acid metabolism abnormalities caused by HF-CRC in colorectal tissues. Consistently, ECD gavage lowered ACSL4, ACSL1, CPT1A, and FASN levels in colorectal tissues. Conclusions. ECD inhibited HF-CRC progression through the regulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Linghong Liao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fei Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Zewei Zhuo
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chengbao Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaofang Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruifang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bizhen Gao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shanshan Ding
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
8
|
Ni T, Li Y, Guo D, Tan L, Xiao Z, Shi Y. LncRNA DNAJC3-AS1 promotes the biological functions of papillary thyroid carcinoma via regulating the microRNA-27a-3p/CCBE1 axis. Cell Biol Int 2023; 47:539-547. [PMID: 36583660 DOI: 10.1002/cbin.11946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022]
Abstract
Long noncoding RNA DNAJC3-AS1 (lncRNA DNAJC3-AS1) has been probed in many studies, while the regulatory mechanism of DNAJC3-AS1 on papillary thyroid carcinoma (PTC) via regulating microRNA (miR)-27a-3p remains inadequate. This research aims to depict the role of DNAJC3-AS1, miR-27a-3p, collagen, and calcium-binding EGF domain-containing protein 1 (CCBE1) on PTC development. DNAJC3-AS1, miR-27a-3p, and CCBE1 expression levels in PTC tissues and adjacent normal tissues were tested. The relation of DNAJC3-AS1, miR-27a-3p, and CCBE1 was analyzed. DNAJC3-AS1 and miR-27a-3p and CCBE1-related oligonucleotides were transfected into IHH-4 cells to investigate their role in PTC development. Cell tumorigenicity was detected by in vivo assay. DNAJC3-AS1 and CCBE1 expressed highly and miR-27a-3p expressed lowly in PTC. Downregulation of DNAJC3-AS1, upregulating miR-27a-3p or downregulating CCBE1 impaired the malignant behaviors of IHH-4 cells. Depletion of miR-27a-3p reversed the DNAJC3-AS1 suppression-induced phenotypic inhibition of IHH-4 cells. DNAJC3-AS1 bound to miR-27a-3p and CCBE1 as a target of miR-27a-3p. Our study highlights that DNAJC3-AS1 inhibits miR-27a-3p to promote CCBE1 expression, thereby facilitating PTC development. This study affords distinguished therapeutic strategies and novel research directions for PTC treatment.
Collapse
Affiliation(s)
- Tiangen Ni
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyong Li
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Guo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Tan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhesi Xiao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjie Shi
- Department of Otolaryngology Head and Neck Surgery, Chongqing Renji Hospital, University of Chinese Academy of Sciences (Chongqing Fifth People's Hospital), Chongqing, China
| |
Collapse
|
9
|
Oyang L, Ouyang L, Yang L, Lin J, Xia L, Tan S, Wu N, Han Y, Yang Y, Li J, Chen X, Tang Y, Su M, Luo X, Li J, Xiong W, Zeng Z, Liao Q, Zhou Y. LPLUNC1 reduces glycolysis in nasopharyngeal carcinoma cells through the PHB1-p53/c-Myc axis. Cancer Sci 2023; 114:870-884. [PMID: 36382614 PMCID: PMC9986081 DOI: 10.1111/cas.15662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cells prefer glycolysis to support their proliferation. Our previous studies have shown that the long palate, lung, and nasal epithelial cell clone 1 (LPLUNC1) can upregulate prohibitin 1 (PHB1) expression to inhibit the proliferation of nasopharyngeal carcinoma (NPC) cells. Given that PHB1 is an important regulator of cell energy metabolism, we explored whether and how LPLUNC1 regulated glucose glycolysis in NPC cells. LPLUNC1 or PHB1 overexpression decreased glycolysis and increased oxidative phosphorylation (OXPHOS)-related protein expression in NPC cells, promoting phosphorylated PHB1 nuclear translocation through 14-3-3σ. LPLUNC1 overexpression also increased p53 but decreased c-Myc expression in NPC cells, which were crucial for the decrease in glycolysis and increase in OXPHOS-related protein expression induced by LPLUNC1 overexpression. Finally, we found that treatment with all-trans retinoic acid (ATRA) reduced the viability and clonogenicity of NPC cells, decreased glycolysis, and increased OXPHOS-related protein expression by enhancing LPLUNC1 expression in NPC cells. Therefore, the LPLUNC1-PHB1-p53/c-Myc axis decreased glycolysis in NPC cells, and ATRA upregulated LPLUNC1 expression, ATRA maybe a promising drug for the treatment of NPC.
Collapse
Affiliation(s)
- Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Ouyang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,University of South China, Changsha, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,University of South China, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinyun Li
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China
| |
Collapse
|
10
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Xu Y, Yu X, Zhang Q, He Y, Guo W. A novel classification of HCC basing on fatty-acid-associated lncRNA. Sci Rep 2022; 12:18863. [PMID: 36344648 PMCID: PMC9640627 DOI: 10.1038/s41598-022-23681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant long noncoding RNA (lncRNA) expression and fatty acid signaling dysfunction both contribute to hepatocellular carcinoma (HCC) occurrence and development. However, the relationship and interaction mechanism between lncRNAs and fatty acid signaling in HCC remain unclear. Data regarding RNA expression and clinical outcomes for patients with HCC were obtained from The Cancer Genome Atlas (TCGA), HCCDB, and the Gene Expression Omnibus (GEO) databases. Hallmark pathways were identified using the single-sample gene set enrichment analysis (ssGSEA) method. ConsensusClusterPlus was used to establish a consistency matrix for classifying samples into three subtypes. A risk signature was established, and predictive values for key lncRNAs related to prognosis were evaluated using Kaplan-Meier analysis and receiver operating characteristic curves. The ESTIMATE algorithm, MCP-Counter, and ssGSEA were used to evaluate the characteristics of the tumor immune microenvironment. The CTRP2.0 and PRISM were used to analyze drug sensitivity in HCC subtypes. We discovered seven fatty-acid-associated lncRNAs with predictive prognostic capabilities, including TRAF3IP2-AS1, SNHG10, AL157392.2, LINC02641, AL357079.1, AC046134.2, and A1BG-AS. Three subtypes were obtained, which presented with differences in prognosis, clinical information, mutation features, pathway traits, immune characteristics, and drug sensitivity. The seven key lncRNAs identified in this study might serve as promising biomarkers for predicting prognosis in patients with HCC, and the three HCC subtypes classified according to lncRNA expression profiles could improve HCC classification.
Collapse
Affiliation(s)
- Yating Xu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
12
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
13
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
14
|
Huang Z, Gao H, Qing L, Wang B, He C, Luo N, Lu C, Fan S, Gu P, Zhao H. A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway. PeerJ 2022; 10:e13220. [PMID: 35433119 PMCID: PMC9009331 DOI: 10.7717/peerj.13220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background There is growing evidence that long non-coding RNAs (LncRNAs) are key in the development of a variety of human tumors. However, the role of lncRNA GTF2IRD2P1 has not been well studied in cancer. The impact of GTF2IRD2P1 on the biological function and clinical relevance in bladder cancer is largely unknown. This study aimed to investigate the biological role of GTF2IRD2P1 in bladder evolution and carcinogenesis. Methods We used bioinformatics to obtain the lncRNA GTF2IRD2P1 from bladder urothelial carcinoma (BLCA) in The Cancer Genome Atlas (TCGA) database. The expression of lncRNA GTF2IRD2P1 was detected by qRT-PCR. The CCK8 assay and flow cytometry were used to detect the lncRNA GTF2IRD2P1 function on the proliferation of bladder cancer cells. A western blot was used to calculate the protein level of cell cycle proteins and Wnt signaling pathway proteins. The effect of lncRNA GTF2IRD2P1 on tumorigenesis of bladder cancer was confirmed by a xenograft nude mouse model. Results GTF2IRD2P1 expression was found to be lower in both human bladder cancer tissues and cell lines (UM-UC-3, RT4, and 5637), and elevated in T24 compared to the corresponding normal controls. GTF2IRD2P1 expression was also enhanced after transfection of UM-UC-3 cells with the overexpression vector. Meanwhile, overexpression of GTF2IRD2P1 inhibited the proliferation of UM-UC-3 and prolonged the cell cycle. The silencing of GTF2IRD2P1 significantly increased the proliferation and shortened the cell cycle of T24 cells and induced Wnt signaling activity to promote the progression of bladder cancer. Similarly, the transplanted tumor nude mouse model demonstrated that silencing GTF2IRD2P1 strengthens the progression of bladder cancer by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Hongbin Gao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Liangliang Qing
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Biao Wang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Chaoyong He
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Ning Luo
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Chuncheng Lu
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Shipeng Fan
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Peng Gu
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| | - Hui Zhao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China,Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming Medical College, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
15
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
16
|
Fu C, Li J, Li P, Cheng D. LncRNA DNAJC3-AS1 Promotes Hepatocellular Carcinoma (HCC) Progression via Sponging Premature miR-27b. Cancer Manag Res 2021; 13:8575-8583. [PMID: 34815712 PMCID: PMC8604638 DOI: 10.2147/cmar.s321111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNA (lncRNA) DNAJC3 antisense RNA 1 (head to head) (DNAJC3-AS1) plays a key role in the progression of several cancers. However, its biological role in hepatocellular carcinoma (HCC) is still unclear. We aimed to investigate the role of DNAJC3-AS1 in the development of HCC and reveal the potential mechanisms. Materials and Methods Expression analysis of DNAJC3-AS1 and microRNA-27b (miR-27b) at both mature and premature levels was determined by RT-qPCR. HCC patients were followed up for 5 years to analyze the prognostic value of DNAJC3-AS1 for HCC. The direct interaction between DNAJC3-AS1 and premature miR-27b was analyzed with RNA pull-down assay. Subcellular analysis of DNAJC3-AS1 was explored by subcellular fractionation assay. DNAJC3-AS1 overexpression and knockdown were carried out to analyze the role of DNAJC3-AS1 in miR-27b maturation. Cell proliferation was analyzed by BrdU assay. Results DNAJC3-AS1 was overexpressed in HCC and predicts the poor survival. MiR-27b was downregulated at mature miRNA level, but upregulated at premature level. DNAJC3-AS1 directly interacted with premature miR-27b and was localized to both nuclear and cytoplasm. DNAJC3-AS1 overexpression upregulated premature miR-27b and downregulated mature miR-27b, while DNAJC3-AS1 knockdown led to the opposite results. DNAJC3-AS1 suppressed the role of miR-27b in inhibiting cell proliferation. Conclusion DNAJC3-AS1 promotes HCC by sponging premature miR-27b and might be a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Changbo Fu
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan City, 430000, People's Republic of China
| | - Jianxiu Li
- Disinfection Supply Center of Weifang Yidu Central Hospital, Weifang City, 266000, People's Republic of China
| | - Ping Li
- Emergency Care Center of Qingdao Central Hospital, Qingdao City, 266000, People's Republic of China
| | - Dan Cheng
- Department of Liver Disease Infection, Edong Healthcare City Hospital of Traditional Chinese Medicine, Infections Disease Hospital, Huangshi City, 435000, People's Republic of China
| |
Collapse
|
17
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
18
|
Ma ML, Zhang HY, Zhang SY, Yi XL. LncRNA CDKN2B‑AS1 sponges miR‑28‑5p to regulate proliferation and inhibit apoptosis in colorectal cancer. Oncol Rep 2021; 46:213. [PMID: 34368874 DOI: 10.3892/or.2021.8164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNA (lncRNA) CDKN2B‑antisense RNA 1 (AS1) functions as a tumor oncogene in numerous cancers. However, the roles and mechanism of CDKN2B‑AS1 in colorectal cancer (CRC) have not been explored. The present study aimed to investigate whether and how CDKN2B‑AS1 contributes to CRC progression. The data revealed that CDKN2B‑AS1 expression was upregulated in CRC tissues. Loss‑of‑function assays demonstrated that CDKN2B‑AS1 in CRC modulated cell proliferation and apoptosis, which was mediated by cyclin D1, cyclin‑dependent kinase (CDK) 4, p‑Rb, caspase‑9 and caspase‑3. Bioinformatics analysis and luciferase reporter assays indicated direct binding of microRNA (miR)‑28‑5p to CDKN2B‑AS1. Moreover, the results herein revealed that the expression of miR‑28‑5p was negatively correlated with that of CDKN2B‑AS1 in CRC tissue. Moreover, CDKN2B‑AS1 acted as a miR‑28‑5p competing endogenous RNA (ceRNA) to target and regulate the expression of URGCP. These findings indicated that CDKN2B‑AS1 plays roles in CRC progression, providing a potential therapeutic target or novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Mei-Li Ma
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Hong-Yan Zhang
- Department of Oncology, Qingdao ChengYang People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Shu-Yi Zhang
- Department of Radiology, Qingdao Haici Medical Group, Qingdao, Shandong 266034, P.R. China
| | - Xiao-Li Yi
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| |
Collapse
|