1
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhlén M, Svenningsson P, Schwenk JM, Sakmar TP. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. SCIENCE ADVANCES 2024; 10:eado9959. [PMID: 39083597 PMCID: PMC11290489 DOI: 10.1126/sciadv.ado9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Receptor activity-modifying proteins (RAMPs) form complexes with G protein-coupled receptors (GPCRs) and may regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a comprehensive GPCR-RAMP interactome, we created a library of 215 dual epitope-tagged (DuET) GPCRs representing all GPCR subfamilies and coexpressed each GPCR with each of the three RAMPs. Screening the GPCR-RAMP pairs with customized multiplexed suspension bead array (SBA) immunoassays, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for interactions in three cell lines and found 23 endogenously expressed GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective therapeutics targeting GPCR-RAMP complexes.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Luo C, Mo Q, Ren G. SYT7 promotes breast cancer cells growth through the PI3K/AKT pathway. Transl Cancer Res 2024; 13:2767-2778. [PMID: 38988943 PMCID: PMC11231800 DOI: 10.21037/tcr-24-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/07/2024] [Indexed: 07/12/2024]
Abstract
Background Breast cancer is one of the most malignant tumors in the reproductive system and has a poor prognosis. The aim of this study was to investigate the function and underlying mechanism of synaptotagmin 7 (SYT7) in breast cancer. Methods We utilized The Cancer Genome Atlas (TCGA) database and the Kaplan-Meier plotter database to assess the correlation between SYT7 expression and the prognosis of breast cancer patients. The efficacy of SYT7 knockdown was evaluated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Furthermore, we examined the impact of SYT7 on breast cancer cell proliferation and apoptosis using Cell Counting Kit-8 (CCK-8), clone formation assays, and flow cytometry. Through Western blot analysis, we investigated the influence of SYT7 on the expression of apoptosis-related markers and the PI3K/AKT signaling pathway in breast cancer. Results The TCGA database data analysis revealed a significant up-regulation of SYT7 expression in breast cancer tissues compared to normal tissues (P<0.001). A correlation was observed between SYT7 expression and tumor size (P=0.009), as well as estrogen receptor (ER) expression level (P<0.001) and progesterone receptor (PR) expression level (P<0.001) in breast cancer patients. Analysis of the Kaplan-Meier plotter database indicated that high SYT7 expression was associated with a shorter overall survival (OS) (P=0.009). The mRNA expression results indicated higher SYT7 expression in breast cancer tissues compared to adjacent normal tissues (P=0.005). CCK-8, clone formation assay, and flow cytometry results demonstrated that SYT7 promoted the proliferation and inhibited the apoptosis of breast cancer cells. Western blot assay confirmed the activation of PI3K/AKT signaling by SYT7. Conclusions The findings suggest that SYT7 is highly expressed in breast cancer and that its high expression is linked to clinical characteristics and prognosis. Inhibition of SYT7 through knockdown can suppress proliferation and promote apoptosis of breast cancer cells, making it a potential target for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chenghao Luo
- Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfan Mo
- Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Dong C, Ma H, Mi N, Fu W, Yi J, Gao L, Wang H, Ren Y, Lin Y, Han F, Chen Z, Zhou W. Integrated analysis of scRNA-seq and bulk RNA-seq reveals that GPRC5A is an important prognostic gene in pancreatic cancer and is associated with B-cell Infiltration in pancreatic cancer. Front Oncol 2024; 14:1283164. [PMID: 38634049 PMCID: PMC11021786 DOI: 10.3389/fonc.2024.1283164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/23/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Pancreatic cancer (PC) is a malignancy with poor prognosis. This investigation aimed to determine the relevant genes that affect the prognosis of PC and investigate their relationship with immune infiltration. Methods : First, we acquired PC single-cell chip data from the GEO database to scrutinize dissimilarities in immune cell infiltration and differential genes between cancerous and adjacent tissues. Subsequently, we combined clinical data from TCGA to identify genes relevant to PC prognosis. Employing Cox and Lasso regression analyses, we constructed a multifactorial Cox prognostic model, which we subsequently confirmed. The prognostic gene expression in PC was authenticated using RT-PCR. Moreover, we employed the TIMER online database to examine the relationship between the expression of prognostic genes and T and B cell infiltration. Additionally, the expression of GPRC5A and its correlation with B cells infiltration and patient prognosis were ascertained in tissue chips using multiple immune fluorescence staining. Results The single-cell analysis unveiled dissimilarities in B-cell infiltration between cancerous and neighboring tissues. We developed a prognostic model utilizing three genes, indicating that patients with high-risk scores experienced a more unfavorable prognosis. Immune infiltration analysis revealed a significant correlation among YWHAZ, GPRC5A, and B cell immune infiltration. In tissue samples, GPRC5A exhibited substantial overexpression and a robust association with an adverse prognosis, demonstrating a positive correlation with B cell infiltration. Conclusion GPRC5A is an independent risk factor in PC and correlated with B cell immune infiltration in PC. These outcomes indicated that GPRC5A is a viable target for treating PC.
Collapse
Affiliation(s)
- Chunlu Dong
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Jianfeng Yi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- Department of Surgery, The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Long Gao
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
| | - Haiping Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanyan Lin
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhou Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
6
|
Profiling of G-Protein Coupled Receptors in Adipose Tissue and Differentiating Adipocytes Offers a Translational Resource for Obesity/Metabolic Research. Cells 2023; 12:cells12030377. [PMID: 36766718 PMCID: PMC9913134 DOI: 10.3390/cells12030377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are expressed essentially on all cells, facilitating cellular responses to external stimuli, and are involved in nearly every biological process. Several members of this family play significant roles in the regulation of adipogenesis and adipose metabolism. However, the expression and functional significance of a vast number of GPCRs in adipose tissue are unknown. We used a high-throughput RT-PCR panel to determine the expression of the entire repertoire of non-sensory GPCRs in mouse white, and brown adipose tissue and assess changes in their expression during adipogenic differentiation of murine adipocyte cell line, 3T3-L1. In addition, the expression of GPCRs in subcutaneous adipose tissues from lean, obese, and diabetic human subjects and in adipocytes isolated from regular chow and high-fat fed mice were evaluated by re-analyzing RNA-sequencing data. We detected a total of 292 and 271 GPCRs in mouse white and brown adipose tissue, respectively. There is a significant overlap in the expression of GPCRs between the two adipose tissue depots, but several GPCRs are specifically expressed in one of the two tissue types. Adipogenic differentiation of 3T3-L1 cells had a profound impact on the expression of several GPCRs. RNA sequencing of subcutaneous adipose from healthy human subjects detected 255 GPCRs and obesity significantly changed the expression of several GPCRs in adipose tissue. High-fat diet had a significant impact on adipocyte GPCR expression that was similar to human obesity. Finally, we report several highly expressed GPCRs with no known role in adipose biology whose expression was significantly altered during adipogenic differentiation, and/or in the diseased human subjects. These GPCRs could play an important role in adipose metabolism and serve as a valuable translational resource for obesity and metabolic research.
Collapse
|
7
|
Liu X, Tao M. SSX2IP as a novel prognosis biomarker plays an important role in the development of breast cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|