1
|
Luangwattananun P, Sangsuwannukul T, Supimon K, Thuwajit C, Chieochansin T, Sa-Nguanraksa D, Samarnthai N, O-Charoenrat P, Junking M, Yenchitsomanus PT. Anti-PD-L1 × anti-CD3 bispecific T-cell engager-armed T cells can overcome immunosuppression and redirect T cells to kill breast cancer cells expressing PD-L1. Int Immunopharmacol 2023; 124:111012. [PMID: 37804657 DOI: 10.1016/j.intimp.2023.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
T cell-based immunotherapy has transformed cancer treatment. Nonetheless, T cell antitumor activity can be inhibited by an immune checkpoint molecule expressed on cancer cells, program death ligand 1 (PD-L1), which interacts with the PD-1 on T cells. We generated αPD-L1 × αCD3 bispecific T-cell engager-armed T cells (BATs) to prevent PD-L1/PD-1 interaction and hence to redirect T cells to kill cancer cells. αPD-L1 × αCD3 bispecific T-cell engagers (BTEs) were produced from Chinese hamster ovary (CHO) cells to arm human primary T cells. Flow cytometry was used to investigate BTE binding to BATs. The cytotoxicity of BATs against PD-L1-expressing breast cancer (BC) cell lines was assessed in 2-dimensional (2D) and 3-dimensional (3D) culture models. The binding stability of BTE on BATs and their efficacy after cryopreservation were also examined. The CHO cell BTE expression yield was 3.34 mg/ml. The binding ability on T cells reached 91.02 ± 4.2 %. BATs specifically lysed PD-L1-expressing BC cells, with 56.4 ± 15.3 % HCC70 cells and 70.67 ± 15.6 % MDA-MB-231 cells lysed at a 10:1 effector-to-target ratio. BATs showed slight, nonsignificant lysis of PD-L1-negative BC cells, MCF-7, and T47D. Moreover, BATs significantly disrupted MDA-MB-231 3D spheroids expressing PD-L1 after 48 and 72 h of coculture. Cryopreserved BATs maintained BTE binding stability, cell viability, and anticancer activity, comparable to fresh BATs. αPD-L1 × αCD3 BATs induced the cytolysis of PD-L1-expressing BC cells in 2D and 3D coculture assays. BATs can be prepared and preserved, facilitating their use and transportation. This study demonstrates the potential of αPD-L1 × αCD3 BATs in treating cancers with positive PD-L1 expression.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanich Sangsuwannukul
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonlapat Supimon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norasate Samarnthai
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Espinosa-Cotton M, Guo HF, Cheung NKV. Tracking Bispecific Antibody-Induced T Cell Trafficking Using Luciferase-Transduced Human T Cells. J Vis Exp 2023:10.3791/64390. [PMID: 37246883 PMCID: PMC10999115 DOI: 10.3791/64390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
T cell-engaging bispecific antibodies (T-BsAbs) are in various stages of preclinical development and clinical testing for solid tumors. Factors such as valency, spatial arrangement, interdomain distance, and Fc mutations affect the anti-tumor efficacy of these therapies, commonly by influencing the homing of T cells to tumors, which remains a major challenge. Here, we describe a method to transduce activated human T cells with luciferase, allowing in vivo tracking of T cells during T-BsAb therapy studies. The ability of T-BsAbs to redirect T cells to tumors can be quantitatively evaluated at multiple time points during treatment, allowing researchers to correlate the anti-tumor efficacy of T-BsAbs and other interventions with the persistence of T cells in tumors. This method alleviates the need to sacrifice animals during treatment to histologically assess T cell infiltration and can be repeated at multiple time points to determine the kinetics of T cell trafficking during and after treatment.
Collapse
Affiliation(s)
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
3
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|