1
|
Hou C, Yang Y, Wang P, Xie H, Jin S, Zhao L, Wu G, Xing H, Chen H, Liu B, Du C, Sun X, He L. CCDC113 promotes colorectal cancer tumorigenesis and metastasis via TGF-β signaling pathway. Cell Death Dis 2024; 15:666. [PMID: 39261464 PMCID: PMC11390942 DOI: 10.1038/s41419-024-07036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Although CRC patients' survival is improved with surgical resection and immunotherapy, metastasis and recurrence remain major problems leading to poor prognosis. Therefore, exploring pathogenesis and identifying specific biomarkers are crucial for CRC early diagnosis and targeted therapy. CCDC113, a member of CCDC families, has been reported to play roles in ciliary assembly, ciliary activity, PSCI, asthma and early lung cancer diagnosis. However, the functions of CCDC113 in CRC still remain unclear. In this study, we find that CCDC113 is significantly highly expressed in CRC. High expression of CCDC113 is significantly correlated with CRC patients' poor prognosis. CCDC113 is required for CRC tumorigenesis and metastasis. RNA-seq and TCGA database analysis indicate that CCDC113 is positively correlated with TGF-β signaling pathway. TGF-β signaling pathway inhibitor galunisertib could reverse the increased proliferation and migration ability of CRC cells caused by CCDC113 overexpression in vitro and in vivo. These results indicate that CCDC113 promotes CRC tumorigenesis and metastasis via TGF-β signaling pathway. In conclusion, it is the first time to explore the functions and mechanisms of CCDC113 in CRC tumorigenesis and metastasis. And CCDC113 may be a potential biomarker and therapeutic target for CRC intervention.
Collapse
Affiliation(s)
- Chenying Hou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanmei Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiwen Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huimin Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangbo Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanghua Wu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Xing
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunyan Du
- Laboratory Animal Center, Zhengzhou University, Zhengzhou, China.
| | - Xiao Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Luyun He
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
3
|
Wang J, Huang CLH, Zhang Y. Complement C1q Binding Protein (C1QBP): Physiological Functions, Mutation-Associated Mitochondrial Cardiomyopathy and Current Disease Models. Front Cardiovasc Med 2022; 9:843853. [PMID: 35310974 PMCID: PMC8924301 DOI: 10.3389/fcvm.2022.843853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Complement C1q binding protein (C1QBP, p32) is primarily localized in mitochondrial matrix and associated with mitochondrial oxidative phosphorylative function. C1QBP deficiency presents as a mitochondrial disorder involving multiple organ systems. Recently, disease associated C1QBP mutations have been identified in patients with a combined oxidative phosphorylation deficiency taking an autosomal recessive inherited pattern. The clinical spectrum ranges from intrauterine growth restriction to childhood (cardio) myopathy and late-onset progressive external ophthalmoplegia. This review summarizes the physiological functions of C1QBP, its mutation-associated mitochondrial cardiomyopathy shown in the reported available patients and current experimental disease platforms modeling these conditions.
Collapse
Affiliation(s)
- Jie Wang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | | | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
- Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Yanmin Zhang
| |
Collapse
|
4
|
Skibbe K, Brethack AK, Sünderhauf A, Ragab M, Raschdorf A, Hicken M, Schlichting H, Preira J, Brandt J, Castven D, Föh B, Pagel R, Marquardt JU, Sina C, Derer S. Colorectal Cancer Progression Is Potently Reduced by a Glucose-Free, High-Protein Diet: Comparison to Anti-EGFR Therapy. Cancers (Basel) 2021; 13:cancers13225817. [PMID: 34830971 PMCID: PMC8616508 DOI: 10.3390/cancers13225817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary To study the interplay between nutrition and intestinal metabolism in the context of colitis-driven colorectal carcinoma (CRC), we here investigated a nutritional therapy strategy in the presence or absence of EGFR-directed antibody therapy in mice to treat established colitis-driven CRCs in vivo. After CRC development, mice were fed a control diet or an isoenergetic glucose-free high-protein (GFHP) diet in the presence or absence of EGFR-directed antibody therapy. The GFHP diet was accompanied by a metabolic shift of the mice towards lower glycolysis activity. Both, GFHP diet or anti-EGFR antibody treatment, improved tumor differentiation and anti-tumor immune response, resulting in an efficient reduction of colonic tumor burden. Abstract To enable rapid proliferation, colorectal tumor cells up-regulate epidermal growth factor receptor (EGFR) signaling and aerobic glycolysis, resulting in substantial lactate release into the tumor microenvironment and impaired anti-tumor immune responses. We hypothesized that a nutritional intervention designed to reduce aerobic glycolysis may boost the EGFR-directed antibody (Ab)-based therapy of pre-existing colitis-driven colorectal carcinoma (CRC). CRC development was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) administration to C57BL/6 mice. AOM/DSS-treated mice were fed a glucose-free, high-protein diet (GFHPD) or an isoenergetic control diet (CD) in the presence or absence of an i.p. injection of an anti-EGFR mIgG2a or respective controls. AOM/DSS-treated mice on a GFHPD displayed a reduced systemic glucose metabolism associated with reduced oxidative phosphorylation (OXPHOS) complex IV expression and diminished tumor loads. Comparable but not additive to an anti-EGFR-Ab therapy, the GFHPD was accompanied by enhanced tumoral goblet cell differentiation and decreased colonic PD-L1 and splenic CD3ε, as well as PD-1 immune checkpoint expression. In vitro, glucose-free, high-amino acid culture conditions reduced proliferation but improved goblet cell differentiation of murine and human CRC cell lines MC-38 and HT29-MTX in combination with down-regulation of PD-L1 expression. We here found GFHPD to systemically dampen glycolysis activity, thereby reducing CRC progression with a similar efficacy to EGFR-directed antibody therapy.
Collapse
Affiliation(s)
- Kerstin Skibbe
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Mohab Ragab
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Joyce Preira
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Jennifer Brandt
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - Darko Castven
- 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (D.C.); (J.U.M.)
| | - Bandik Föh
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
| | - René Pagel
- Institute of Anatomy, University of Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany;
| | - Jens U. Marquardt
- 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (D.C.); (J.U.M.)
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
- 1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany; (K.S.); (A.-K.B.); (A.S.); (M.R.); (A.R.); (M.H.); (H.S.); (J.P.); (J.B.); (B.F.); (C.S.)
- Correspondence:
| |
Collapse
|