1
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Saccomano G, Pinamonti M, Longo E, Marcuzzo T, Tromba G, Dreossi D, Brun F. The potential of x-ray virtual histology in the diagnosis of skin tumors. Skin Res Technol 2024; 30:e13801. [PMID: 39363439 PMCID: PMC11449805 DOI: 10.1111/srt.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Histopathological analysis represents the gold standard in clinical practice for diagnosing skin neoplasms. While the current diagnostic workflow has specialized in producing robust and accurate results, interpreting tissue architecture and malignant cellular morphology correctly remains one of the greatest challenges for pathologists. This paper aims to explore the prospect of applying x-ray virtual histology to human skin tumor excisions and correlating it with the histological validation. MATERIALS AND METHODS Seven skin biopsies containing intriguing melanoma types and pigmented skin lesions were scanned using x-ray Computed micro-Tomography (μCT) and then sectioned for conventional histology assessment. RESULTS The tissue microarchitecture reconstructed by μCT offers detailed insights into diagnosing the malignancy or benignity of the skin lesions. Three-dimensional reconstruction via x-ray virtual histology reveals infiltrative patterns in basal cell carcinoma and evaluated invasiveness in melanoma. The technology enables the identification of pagetoid distributions of neoplastic cells and the assessment of melanoma depth in three dimensions. CONCLUSION Although the proposed approach is not intended to replace conventional histology, the non-destructive nature of the sample and the clarity provided by virtual inspection demonstrate the promising impact of μCT as a valid support method prior to conventional histological sectioning. Indeed, μCT images can suggest the optimal sectioning position before using a microtome, as is commonly performed in histological practice. Moreover, the three-dimensional nature of the proposed approach paves the way for a more accurate assessment of significant prognostic factors in melanoma, such as Breslow thickness, by considering the whole micro-volume rather than a two-dimensional observation.
Collapse
Affiliation(s)
- Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
| | - Thomas Marcuzzo
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | | | | | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| |
Collapse
|
3
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Brunet J, Walsh CL, Wagner WL, Bellier A, Werlein C, Marussi S, Jonigk DD, Verleden SE, Ackermann M, Lee PD, Tafforeau P. Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility. Nat Protoc 2023; 18:1441-1461. [PMID: 36859614 DOI: 10.1038/s41596-023-00804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 03/03/2023]
Abstract
Imaging across different scales is essential for understanding healthy organ morphology and pathophysiological changes. The macro- and microscale three-dimensional morphology of large samples, including intact human organs, is possible with X-ray microtomography (using laboratory or synchrotron sources). Preparation of large samples for high-resolution imaging, however, is challenging due to limitations such as sample shrinkage, insufficient contrast, movement of the sample and bubble formation during mounting or scanning. Here, we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography. We detail the protocol applied to whole human organs and hierarchical phase-contrast tomography at the European Synchrotron Radiation Facility, yet it is applicable to a range of biological samples, including complete organisms. The protocol enhances the contrast when using X-ray imaging, while preventing sample motion during the scan, even with different sample orientations. Bubbles trapped during mounting and those formed during scanning (in the case of synchrotron X-ray imaging) are mitigated by multiple degassing steps. The sample preparation is also compatible with magnetic resonance imaging, computed tomography and histological observation. The sample preparation and mounting require 24-36 d for a large organ such as a whole human brain or heart. The preparation time varies depending on the composition, size and fragility of the tissue. Use of the protocol enables scanning of intact organs with a diameter of 150 mm with a local voxel size of 1 μm. The protocol requires users with expertise in handling human or animal organs, laboratory operation and X-ray imaging.
Collapse
Affiliation(s)
- J Brunet
- Department of Mechanical Engineering, University College London, London, UK.
- European Synchrotron Radiation Facility, Grenoble, France.
| | - C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - A Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - S E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - M Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
- Research Complex at Harwell, Didcot, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
5
|
Fardin L, Giaccaglia C, Busca P, Bravin A. Characterization of a CdTe single-photon-counting detector for biomedical imaging applications. Phys Med 2023; 108:102571. [PMID: 36989977 DOI: 10.1016/j.ejmp.2023.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE The Eiger 2X CdTe 1 M-W (Dectris ltd, Baden, Switzerland) single photon counting detector was characterized for imaging applications at the biomedical beamline ID17 of the European Synchrotron Radiation Facility. METHODS Linearity, Modulation Transfer Function, Noise Power Spectrum and Detective Quantum Efficiency were measured as a function of photon energy and flux in the range 26-80 keV. RESULTS The linearity was confirmed in the flux range specified by Dectris and a detection efficiency higher than 60 % was measured for energies up to 80 keV. The spatial resolution was inferred from the Modulation Transfer Function and was found to be compatible with the pixel size of the detector (75 μm), except at energies just above the K-edge of Cd and Te where it reached 150 μm. The study of the Noise Power Spectrum showed a time-dependency in the response of the sensor, which is mitigated at low photon fluxes (<2⨯108 ph mm-2 s-1). CONCLUSIONS This work was the first characterization of the Eiger 2X CdTe 1 M-W for imaging applications with monochromatic synchrotron radiation. The spatial resolution and the quantum efficiency are compatible with low-dose imaging applications.
Collapse
|
6
|
Abstract
X-ray computed tomography (CT) is an invaluable technique for generating three-dimensional (3D) images of inert or living specimens. X-ray CT is used in many scientific, industrial, and societal fields. Compared to conventional 2D X-ray imaging, CT requires longer acquisition times because up to several thousand projections are required for reconstructing a single high-resolution 3D volume. Plenoptic imaging—an emerging technology in visible light field photography—highlights the potential of capturing quasi-3D information with a single exposure. Here, we show the first demonstration of a flexible plenoptic microscope operating with hard X-rays; it is used to computationally reconstruct images at different depths along the optical axis. The experimental results are consistent with the expected axial refocusing, precision, and spatial resolution. Thus, this proof-of-concept experiment opens the horizons to quasi-3D X-ray imaging, without sample rotation, with spatial resolution of a few hundred nanometres.
Collapse
|