1
|
Wu L, Zhu K, Sun Y, Li T, Zhu J, Tong H, Zhang X, Chen J, Yin H, He W. Nucleolar protein 3 promotes proliferation of bladder cancer cells through the PI3K-Akt pathway. World J Surg Oncol 2024; 22:316. [PMID: 39605067 PMCID: PMC11603959 DOI: 10.1186/s12957-024-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Nucleolar protein 3 (NOL3), as a markedly increased protein across a range of tumors, has been well acknowledged that plays an anti-apoptotic role in malignancies, while some novel impacts of NOL3 on metastasis and chemoresistance are demonstrated recently. In this study, we uncover another role of NOL3 on promoting proliferation in bladder cancer (BLCA). The reduction of NOL3 significantly inhibited cell proliferation, and we detected the stable cell cycle arrest after knockdown of NOL3 in two-type BLCA cell lines. Mechanistically, we present the first evidence that the PI3K/Akt pathway was considerably inhibited with the decrease of NOL3 in BLCA cell lines. In addition, LY294002, a PI3K inhibitor, rescued NOL3 overexpression-mediated activation of the PI3K/Akt axis and the depression of proliferation in BLCA cell lines. In conclusion, our study suggests that NOL3 is upregulated in BLCA cells and promotes proliferation via the PI3K/Akt pathway, indicating that NOL3 may be a potential therapeutic target for BLCA.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Kunyao Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Xiaoyu Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Junrui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China.
| |
Collapse
|
2
|
Wang Y, Xiao L, Pan Y. Predictive role of oxidative stress-related genes in colon cancer: a retrospective cohort study based on The Cancer Genome Atlas. Discov Oncol 2024; 15:332. [PMID: 39095620 PMCID: PMC11297001 DOI: 10.1007/s12672-024-01216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE This study aimed to elucidate the predictive role of an oxidative stress-related genes (OSRGs) model in colon cancer. MATERIALS AND METHODS First, OSRGs that were differentially expressed between tumor and normal tissues were identified using The Cancer Genome Atlas (TCGA)-(Colorectal Adenocarcinoma) COAD dataset. Then, Lasso COX regression was performed to develop an optimal prognostic model patients were stratified into high- and low-risk groups based on the expression patterns of these genes. The model's validity was confirmed through Kaplan-Meier survival curves and receiver operating characteristic curve (ROC) analysis. Additionally, enrichment analyses were performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to uncover underlying mechanisms. RESULTS A totally of 115 differentially expressed OSRGs were identified within the TCGA cohort, with 17 significantly linked to overall survival. These 17 genes were used to formulate a prognostic model that differentiated patients into distinct risk groups, with the high-risk group demonstrating a notably inferior overall survival rate. The risk score, when integrated with clinical and pathological data, emerged as an independent prognostic indicator of colon cancer. Further analyses revealed that the disparity in prognostic outcomes between risk groups could be attributed to the reactive oxygen species pathway and the p53 signaling pathway. CONCLUSION A new prediction model was established based on OSRGs. CYP19A1, NOL3 and UCN were found to be highly expressed in tumor tissues and substantial clinical predictive significance. These findings offer new insights into the role of oxidative stress in colon cancer.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Lin Xiao
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Yisheng Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China.
| |
Collapse
|
3
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
4
|
Yang L, Fang C, Zhang R, Zhou S. Prognostic value of oxidative stress-related genes in colorectal cancer and its correlation with tumor immunity. BMC Genomics 2024; 25:8. [PMID: 38166604 PMCID: PMC10759670 DOI: 10.1186/s12864-023-09879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress (OS) plays an essential role in chronic diseases such as colorectal cancer (CRC). In this study, we aimed to explore the relation between oxidative stress-related genes and CRC prognosis and their involvement in the immune microenvironment. Totally 101 OS-related genes were selected from the MsigDB database. Then, univariate Cox regression was used to explore the prognostic value of the selected genes correlated with the CRC patient survival in the TCGA database. A total of 9 prognostic OS-related genes in CRC were identified. Based on consensus clustering, CRC patients were then categorized into two molecular subtypes. A prognostic risk model containing 8 genes was established using Lasso regression, and CRC patients were divided into high or low-risk groups based on the median risk scores. The predictive value of the 8 genes in CRC prognosis was validated using ROC curves, which indicate that CTNNB1, STK25, RNF112, SFPQ, MMP3, and NOL3 were promising prognostic biomarkers in CRC. Furthermore, the immune cell infiltration levels in different risk groups or CRC subtypes were analyzed. We found that the high-risk or C1 subtype had immunosuppressive microenvironment, which might explain the unfavorable prognosis in the two groups of CRC patients. Additionally, functional experiments were conducted to investigate the effects of OS-related genes on CRC cell proliferation, stemness, and apoptosis. We found that CTNNB1, HSPB1, MMP3, and NOL3 were upregulated in CRC tissues and cells. Knockdown of CTNNB1, HSPB1, MMP3, and NOL3 significantly suppressed CRC cell proliferation, stemness and facilitated CRC cell apoptosis. In conclusion, we established prognostic CRC subtypes and an eight-gene risk model, which may provide novel prognostic indicators and benefit the design of individualized therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
5
|
Zhang X, Zhang M, Song L, Wang S, Wei X, Shao W, Song N. Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma. Sci Rep 2023; 13:20266. [PMID: 37985807 PMCID: PMC10662159 DOI: 10.1038/s41598-023-46577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients.
Collapse
Affiliation(s)
- Xi Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mingcong Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lebin Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiyi Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenchuan Shao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ninghong Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Duan B, Zhang H, Zhu Z, Yan X, Ji Z, Li J. LncRNA LINC01871 sponging miR-142-3p to modulate ZYG11B promotes the chemoresistance of colorectal cancer cells by inducing autophagy. Anticancer Drugs 2023; 34:827-836. [PMID: 36847071 PMCID: PMC10344439 DOI: 10.1097/cad.0000000000001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/22/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor in the digestive tract. Increasing evidence indicated that chemoresistance leads to a poor prognosis of CRC. Herein, we aimed to uncover the potential mechanism by which long intergenic noncoding RNA-1871 (LINC01871) affects the chemoresistance of CRC cells. METHODS Relative level of LINC01871 in CRC tissues was assessed by reverse transcription quantitative PCR (RT-qPCR). Kaplan-Meier analysis was conducted to determine the relevance of LINC01871 and the prognosis of CRC patients. Cell Counting Kit-8 (CCK-8) and colony formation assay were used to evaluate the proliferation of SW480 cells. Expression levels of proteins and their genes were assessed by western blot, immunofluorescence staining and RT-qPCR. In addition, the interaction of LINC01871, miR-142-3p and protein zyg-11 homolog B (ZYG11B) were analyzed via dual-luciferase reporter assays. RESULTS LINC01871 was low-expressed in CRC tissues and cell lines. Patients with a low level of LINC01871 showed significantly lower survival rate. pcDNA-LINC01871 significantly reduced the viability of SW480 cells ( P < 0.01), elevated SW480 cells sensitivity to 5-FU ( P < 0.01), reduced LC3 punctate aggregates ( P < 0.01) and downregulated the relative mRNA expression level of autophagy related protein 9A, autophagy related protein 4B and high mobility group box 1 ( P < 0.01) in SW480 cells. Moreover, LINC01871 was found to sponge miR-142-3p, and ZYG11B was the target of miR-142-3p. MiR-142-3p mimic significantly recovered the effect of pcDNA-LINC001871, whereas pcDNA-ZYG11B reversed the recovery effect of the miR-142-3p mimic. CONCLUSION LINC01871/miR-142-3p/ ZYG11B axis regulates the chemoresistance of CRCs by inducing autophagy.
Collapse
Affiliation(s)
- Bensong Duan
- Department of Gastroenterology, Endoscopy Center
| | - Haibin Zhang
- Department of Gastroenterology, Endoscopy Center
| | | | - Xiaohan Yan
- Department of Gastroenterology, Endoscopy Center
| | - Zhonghua Ji
- Department of Anesthesia, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingze Li
- Department of Gastroenterology, Endoscopy Center
| |
Collapse
|
7
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
8
|
A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury. Apoptosis 2023; 28:313-325. [PMID: 36652128 DOI: 10.1007/s10495-022-01802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/19/2023]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.
Collapse
|
9
|
Sun J, Wang J, Li M, Li S, Li H, Lu Y, Li F, Xin T, Jin F. circTOP2A functions as a ceRNA to promote glioma progression by upregulating RPN2. Cancer Sci 2022; 114:490-503. [PMID: 36227125 PMCID: PMC9899613 DOI: 10.1111/cas.15612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Competing endogenous RNA (ceRNA)-mediated signaling pathway dysregulation provides great insight into comprehensively understanding the molecular mechanism and combined targeted therapy for glioblastoma. circRNA is characterized by high stability, tissue/developmental stage-specific expression and abundance in brain and plays significant roles in the initiation and progression of cancer. Our previous published data have demonstrated that RPN2 was significantly upregulated in glioma and promoted tumor progression via the activation of the Wnt/β-catenin pathway. Furthermore, we proved that miR-422a regulated the Wnt/β-catenin signaling pathway by directly targeting RPN2. In this study, based on the glioblastoma microarray profiles, we identified the upstream circTOP2A, which completely bound to miR-422a and was co-expressed with the RPN2. circTOP2A was significantly overexpressed in glioma and conferred a poor prognosis. circTOP2A could regulate RPN2 expression by sponging miR-422a, verified by western blot, dual-luciferase reporter gene assay, and RNA pull-down assay. Functional assays including CCK8, transwell and FITC-annexin V were performed to explore the RPN2-mediated role of the circTOP2A effect on the glioma malignant phenotype. Additionally, TOP/FOP and immunofluorescence analysis were used to confirm that sh-circTOP2A could suppress the Wnt/β-catenin pathway partly through RPN2. Finally, a tumor xenograft model was applied to validate the biological function of circTOP2A in vivo. Taken together, our findings reveal the critical role of circTOP2A in promoting glioma proliferation and invasion via a ceRNA mechanism and provide an exploitable biomarker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Jikui Sun
- Department of NeurosurgeryAffiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro‐oncologyJiningChina,Shandong University of Traditional Chinese MedicineJinanChina,Shandong Medicine and Health Key Laboratory of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Jinhuan Wang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Department of NeurosurgeryTianjin Neurosurgical Institute, Tianjin Huanhu HospitalTianjinChina
| | - Meng Li
- Shandong Medicine and Health Key Laboratory of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Shengjie Li
- Shandong Medicine and Health Key Laboratory of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Hanyun Li
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yan Lu
- Department of NeurosurgeryAffiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro‐oncologyJiningChina,Medical Research CenterAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Feng Li
- Shandong Medicine and Health Key Laboratory of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Tao Xin
- Shandong University of Traditional Chinese MedicineJinanChina,Shandong Medicine and Health Key Laboratory of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Feng Jin
- Department of NeurosurgeryAffiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro‐oncologyJiningChina
| |
Collapse
|
10
|
Song Q, Bian Q, Liang T, Zhang Y, Zhang K. Identification of immune-related genes and susceptible population of pulmonary tuberculosis by constructing TF-miRNA-mRNA regulatory network. Tuberculosis (Edinb) 2021; 131:102139. [PMID: 34740018 DOI: 10.1016/j.tube.2021.102139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
We aimed to explore the potential biomarkers and susceptible population for early diagnosis and treatment of tuberculosis (TB). Ten hub differentially expressed TB-related genes (DETRGs) from GSE83456 dataset were screened with the "limma" package and the GeneCards database. Unsupervised clustering was utilized to identify susceptible population among TB patients based on 10 hub DETRGs. TRANSFAC, MirTarbase, miRanda and TargetScan was used to predict microRNAs and transcription factors (TFs) and construct TF-miRNA-mRNA regulatory network. The results showed that a total of 266 DEGs were identified. Functional analysis mainly enriched in interferon pathway, cytokine and receptor interaction and host defense response to virus, while the four-module genes screened were closely related to interferon-γ signal transduction pathway as well. Based on 10 DETRGs, TB patients were divided into two clusters with significant differences in neutrophil function and 16 hub miRNAs and 10 hub TFs were predicted. Finally, NFATc1- (miR145) - STAT1 regulatory pathway was identified as the critical regulatory pathway, which mediates cytokine receptor binding, interleukin-1 receptor binding and TNF signaling pathway. Hence, we concluded that immunoheterogeneity exists among TB patients and NFATC1-(miR145)-STAT1 regulatory pathway might be associated with tuberculosis infection, which may be valuable targets for prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Quanquan Song
- Department of Prevention and Health Care, Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Qin Bian
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Tingting Liang
- Department of Hospital-Acquired Infection Control, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yinghui Zhang
- Department of Prevention and Health Care, Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Kai Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|