1
|
Wang H, Ma J, Lu J, Wang Y, Zhang B, Zhang H, Peng H. TMB is associated with the prognosis of egfr-mutated non-small cell lung cancer in Xuanwei, China. Biomark Med 2024; 18:1123-1133. [PMID: 39633593 DOI: 10.1080/17520363.2024.2432306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Study on the prognostic characteristics and biomarkers of lung cancer in Xuanwei Patients. MATERIALS AND METHODS A retrospective analysis was conducted on the genetic data of 261 NSCLC patients, as well as the prognostic data of 133 patients. The relationship between prognosis and EGFR mutations in the Xuanwei and non Xuanwei cohorts was compared and analyzed. RESULTS The superior progression-free survival (PFS) in Xuanwei patients was primarily observed in those with EGFR-mutated tumors (p < 0.05). Further analysis of accompanying mutations and TMB levels revealed an association between high TMB and a favorable prognosis in EGFR-mutated Xuanwei NSCLC. CONCLUSION Xuanwei lung cancer differs from non Xuanwei patients in terms of prognosis and tumor mutation burden, and further research should be conducted.
Collapse
Affiliation(s)
- Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Junrui Ma
- School of Nursing, Yunnan University of Traditional Chinese Medicines, Kunming City, Yunnan Province, P.R. China
| | - Jiagui Lu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Yang Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Binli Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Hushan Zhang
- Key Laboratory of Northeastern Yunnan Natural Medicine, Zhaotong Healthy Vocational College, Zhaotong City, Yunnan Province, China
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- The Medical Department, 3D Medicines Inc, Shanghai, P.R. China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| |
Collapse
|
2
|
Balitzer DJ, Greenland NY. The utility of next-generation sequencing in challenging liver FNA biopsies. Cancer Cytopathol 2024; 132:714-722. [PMID: 39097802 DOI: 10.1002/cncy.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Fine-needle aspiration (FNA) biopsy is increasingly used for the diagnosis of hepatocellular masses. Because distinguishing well differentiated hepatocellular carcinoma (HCC) from other well differentiated hepatocellular lesions (e.g., large regenerative nodules or focal nodular hyperplasia) requires an assessment of architectural features, this may be challenging on FNA when intact tissue fragments are not sampled. Poorly differentiated HCC and intrahepatic cholangiocarcinoma (ICC) may exhibit overlapping pathologic features. Molecular testing can be helpful, because mutations in TERT promoter and CTNNB1 (β-catenin) are characteristic of HCC, whereas mutations in BAP1, IDH1/IDH2, and PBRM1 may favor ICC. The goal of this study was to assess the role of next-generation sequencing (NGS) in further subclassifying indeterminate liver lesions sampled by FNA. METHODS A retrospective review of liver cytology cases with NGS on cell block material was performed. Age, radiologic features, background hepatic disease and treatment, outcome, and NGS data were obtained from the electronic medical record. RESULTS Twelve FNA biopsies that had cell blocks from clinically suspected primary hepatic masses were identified. The presence of a TERT promoter mutation supported a diagnosis of HCC for one well differentiated neoplasm. For three patients, the presence of mutations, such as IDH1, CDKN2A/CDKN2B, and BRAF, supported a diagnosis of ICC. Of the eight poorly differentiated carcinomas, NGS helped refine the diagnosis in six of eight cases, with one HCC, three ICCs, and two that had combined HCC-ICC, with two cases remaining unclassified. CONCLUSIONS Molecular diagnostics can be helpful to distinguish HCC and ICC on FNA specimens, although a subset of primary hepatic tumors may remain unclassifiable.
Collapse
Affiliation(s)
- Dana J Balitzer
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Nancy Y Greenland
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Luo MY, Han Z, Wang J, Zhong C, Chen J. TARDBP is a candidate diagnostic biomarker promoting tumor progression via impacting tumor immunity and tumor microenvironment. J Cancer 2024; 15:4113-4127. [PMID: 38947395 PMCID: PMC11212099 DOI: 10.7150/jca.96800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
In the realm of cancer research, particularly hepatocellular carcinoma (HCC), TAR DNA-binding protein (TARDBP) has transitioned from being associated with neurodegenerative diseases to emerging as a significant molecule in oncology due to its aberrant expression in HCC and other malignancies. This shift underlines the versatility of TARDBP and its critical role in tumorigenesis. Our study illuminates TARDBP's universal upregulation across various cancers, indicating its involvement in fundamental oncogenic processes and potential impact on genomic instability. The relationship between TARDBP expression and tumor mutational burden (TMB) across several cancers highlights its influence on a key hallmark of cancer progression. Additionally, TARDBP's interaction with immune and inflammatory factors within the tumor microenvironment, including its association with immune-stimulatory factors and inverse relationship with immune inhibitors, suggests its role in modulating immune evasion. Clinically, TARDBP's aberrant expression correlates with adverse patient outcomes in HCC, making it a promising candidate for therapeutic targeting. The study concludes that TARDBP holds significant potential as a novel therapeutic target in HCC and possibly other malignancies, meriting further exploration to integrate TARDBP-targeted therapies into cancer treatment protocols, thereby advancing the field of precision medicine.
Collapse
Affiliation(s)
- Min-Yi Luo
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Zhe Han
- Department of Neurology, The First Bethune Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Jiaqi Wang
- Department of Neonatology, Jiangmen People's Hospital, 52900, Jiangmen, Guangdong, China
| | - Cheng Zhong
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, 52900, Jiangmen, Guangdong, China
| | - Jiancong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lin Y, Li D, Hui H, Miao H, Luo M, Roy B, Chen B, Zhang W, Shao D, Ma D, Jie Y, Qiu F, Li H, Jiang B. Genomic landscape and tumor mutational features of resected preinvasive to invasive lung adenocarcinoma. Front Oncol 2024; 14:1389618. [PMID: 38803537 PMCID: PMC11128541 DOI: 10.3389/fonc.2024.1389618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are considered pre-invasive forms of lung adenocarcinoma (LUAD) with a 5-year recurrence-free survival of 100%. We investigated genomic profiles in early tumorigenesis and distinguished mutational features of preinvasive to invasive adenocarcinoma (IAC) for early diagnosis. Methods Molecular information was obtained from a 689-gene panel in the 90 early-stage LUAD Chinese patients using next-generation sequencing. Gene signatures were identified between pathology subtypes, including AIS/MIA (n=31) and IAC (n=59) in this cohort. Mutational and clinicopathological information was also obtained from the Cancer Genome Atlas (TCGA) as a comparison cohort. Results A higher mutation frequency of TP53, RBM10, MUC1, CSMD, MED1, LRP1B, GLI1, MAP3K, and RYR2 was observed in the IAC than in the AIS/MIA group. The AIS/MIA group showed higher mutation frequencies of ERBB2, BRAF, GRIN2A, and RB1. Comparable mutation rates for mutually exclusive genes (EGFR and KRAS) across cohorts highlight the critical transition to invasive LUAD. Compared with the TCGA cohort, EGFR, KRAS, TP53, and RBM10 were frequently mutated in both cohorts. Despite limited gene mutation overlap between cohorts, we observed variant mutation types in invasive LUAD. Additionally, the tumor mutation burden (TMB) values were significantly lower in the AIS/MIA group than in the IAC group in both the Chinese cohort (P=0.0053) and TCGA cohort (P<0.01). Conclusion These findings highlight the importance of distinguishing preinvasive from invasive LUAD in the early stages of LUAD and both pathology and molecular features in clinical practice, revealing genomic tumor heterogeneity and population differences.
Collapse
Affiliation(s)
- Yangui Lin
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | | | - Wei Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Di Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Li S, Huang X, Zheng S, Zhang W, Liu F, Cao Q. High expression of SRSF1 facilitates osteosarcoma progression and unveils its potential mechanisms. BMC Cancer 2024; 24:580. [PMID: 38735973 PMCID: PMC11088775 DOI: 10.1186/s12885-024-12346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinyi Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
He S, Wu T, Si Y, Kang J, Wei W, Zhang F, Feng S, Ma J, Wang Y, Guo T. Two New Isospirostanol-Type Saponins from the Bulbs of Lilium Brownii and Their Anti-Hepatocarcinogenic Activity. Chem Biodivers 2024; 21:e202400257. [PMID: 38414116 DOI: 10.1002/cbdv.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Bulbs of Lilium brownii, commonly known as "Bai-he" in China, serve both edible and medicinal purposes in clinical practice. In this study, two new isospirostanol-type saponins were isolated from L. brownii, and their structures were identified by spectroscopic method, and absolute configurations were elucidated by comprehensive analysis of spectral data obtained from combined acid hydrolysis. Two compounds were finally identified as 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside]-(22R,25R)-5α-spirosolane-3β-ol (1) and 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside}-(22R,25R)-5α-spirosolane-3β-ol (2), respectively. Further, we found that compound 2 significantly suppressed the proliferation of SMMC-7721 and HepG2 cells with IC50 values of 26.3±1.08 μM and 30.9±1.59 μM, whereas compound 1 didn't inhibit both of the two hepatocellular carcinoma. Subsequently, compound 2 effectively decreased the levels of interleukin-1β and tumor necrosis factor-α and the expression of Bcl-2, and increased the expression of Bax and Caspase-3 proteins. Which indicated that the anti-hepatocellular carcinoma effect of compound 2 involves reducing the level of inflammation and inducing apoptosis.
Collapse
Affiliation(s)
- Shuaibo He
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, 450046, China
| | - Tingjuan Wu
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
| | - Yanpo Si
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, 450046, China
| | - Jihong Kang
- Dingxi People's Hospital, Dingxi, 743000, China
| | - Wenjun Wei
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, 450046, China
| | - Fei Zhang
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ya Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, NO 156 JinshuiEast Road, Zhengzhou, 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Wang Y, Wang Z. Targeting dysregulated splicing factors in cancer: lessons learned from RBM10 deficiency. J Mol Cell Biol 2024; 15:mjad063. [PMID: 37827547 PMCID: PMC10993714 DOI: 10.1093/jmcb/mjad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Yongbo Wang
- Minhang Hospital, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
9
|
Isaka T, Miyagi Y, Yokose T, Saito H, Kasajima R, Watabe K, Shigeta N, Kikunishi N, Shigefuku S, Murakami K, Adachi H, Nagashima T, Ito H. Impact of RBM10 and PD-L1 expression on the prognosis of pathologic N1-N2 epidermal growth factor receptor mutant lung adenocarcinoma. Transl Lung Cancer Res 2023; 12:2001-2014. [PMID: 38025811 PMCID: PMC10654431 DOI: 10.21037/tlcr-23-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Background Impact of RNA-binding motif protein 10 (RBM10) and programmed death-ligand 1 (PD-L1) on the postoperative prognosis of patients with epidermal growth factor receptor gene mutation (EGFR-Mt) lung adenocarcinoma with pathological lymph node metastasis is still unclear. Methods Patients who underwent curative surgery for pN1-N2 EGFR-Mt lung adenocarcinoma (n=129) harboring the EGFR exon 19 deletion mutation (Ex19) (n=66) or EGFR exon 21 L858R mutation (Ex21) (n=63) between January 2010 and December 2020 were included in this retrospective study. The prognoses of patients with low/high cytoplasmic RBM10 expression and PD-L1 negativity/positivity based on immunohistochemistry (IHC) of resected specimens were compared using the log-rank test. The effects of RBM10 and PD-L1 expression on overall survival (OS) were examined via multivariable analysis using the Cox proportional hazards regression model. The effects of RBM10 and PD-L1 expression on progression-free survival (PFS) of EGFR-tyrosine kinase inhibitors (TKIs) therapy among patients with recurrent pN1-N2 EGFR-Mt lung adenocarcinoma (n=67) were examined using log-rank tests. Results The RBM10 low expression group showed significantly better 5-year OS than the RBM10 high expression group (89.4% vs. 71.5%, P=0.020), and the PD-L1 negative group tended to have longer 5-year OS than the PD-L1 positive group (86.4% vs. 68.4%, P=0.050). Multivariable analysis showed that high RBM10 expression [hazard ratio (HR), 3.12; 95% confidence interval (CI): 1.19-8.17; P=0.021] and PD-L1 positivity (HR, 3.80; 95% CI: 1.64-8.84; P=0.002) were independent poor prognostic factors for OS. PFS of patients with relapse and first-line EGFR-TKI treatment was significantly better in the PD-L1-negative group than in the PD-L1-positive group (34.5 vs. 12.1 months, P=0.045). PFS of patients with Ex21 relapse and first-line EGFR-TKI treatment was significantly better in the RBM10 low expression group than in the RBM10 high expression group (25.5 vs. 13.0 months, P=0.025). Conclusions High RBM10 expression and PD-L1 positivity are poor prognostic factors for OS in patients with pN1-N2 EGFR-Mt lung adenocarcinoma after curative surgery. In patients with recurrent pN1-N2 EGFR-Mt lung adenocarcinoma, PD-L1 and RBM10 expression may influence response to EGFR-TKIs.
Collapse
Affiliation(s)
- Tetsuya Isaka
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kozue Watabe
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Naoko Shigeta
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | | | - Kotaro Murakami
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takuya Nagashima
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
10
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
11
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines 2023; 11:1861. [PMID: 37509501 PMCID: PMC10377220 DOI: 10.3390/biomedicines11071861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The RNA-binding protein RBM10 can regulate apoptosis during the proliferation and migration of pancreatic cancer, endometrial cancer, and osteosarcoma cells; however, the molecular mechanism underlying lung adenocarcinoma is rarely reported. Recent studies have detected multiple truncated and missense mutations in RBM10 in lung adenocarcinoma, but the role of RBM10 in lung adenocarcinoma is unclear. This study mainly explored the immune regulation mechanism of RBM10 in the development of lung adenocarcinoma and its influence on sensitivity to targeted therapy drugs. METHODS The transcriptome data of CGAP were used to analyze the RNA-seq data of lung adenocarcinoma patients from different subgroups by using the CIBERSORT algorithm to infer the relative proportion of various immune infiltrating cells, and Spearman correlation analysis was performed to determine the gene expression and immune cell content. In addition, this study utilized drug trial data from the GDSC database. The IC50 estimates for each specific targeted therapy were obtained by using a regression method, and the regression and prediction accuracy were tested via ten cross-validations with the GDSC training set. An immunohistochemical test was performed on the samples of 20 patients with lung adenocarcinoma in the subcomponent analysis of immune cells, and the protein expression of RBM10 in lung adenocarcinoma tissues was verified by cellular immunofluorescence assays. Nucleic acids were extracted at low temperatures, and qRT-PCR was used to verify the expression levels of the mRNA of RBM10 in lung adenocarcinoma tissues and normal tissues (p < 0.05). RESULTS After screening and inclusion using a machine language, the results showed that RBM10 was significantly highly expressed in the lung adenocarcinoma tissues. The related signaling pathways were mainly concentrated in ncRNA processing, rRNA metabolic processes, ribosome biogenesis, and the regulation of translation. The qRT-PCR for 20 lung adenocarcinoma tissues showed that the expression of RBM10 in these tissues was significantly different from that in normal tissues (p = 0.0255). Immunohistochemistry analysis and cell immunofluorescence staining also confirmed that RBM10 was involved in the immune regulation of lung adenocarcinoma tissues, and the number of immune cell aggregations was significantly higher than that of the control group. RBM10 regulates B cell memory-CIBERSORT (p = 0.042) and B cell memory-CIBERSOTRT-abs (p = 0.027), cancer-associated fibroblast-EPIC (p = 0.001), cancer-associated fibroblast- MCPCounter (p = 0.0037), etc. The risk score was significantly associated with the sensitivity of patients to lapatinib (p = 0.049), nilotinib (p = 0.015), pazopanib (p = 0.001), and sorafenib (p = 0.048). CONCLUSIONS RBM10 can inhibit the proliferation and invasion of lung adenocarcinoma cells through negative regulation and promote the apoptosis of lung adenocarcinoma cells through immunomodulatory mechanisms. The expression level of RBM10 affects the efficacy of targeted drug therapy and the survival prognosis of lung adenocarcinoma patients, which has a certain guiding significance for the clinical treatment of these patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xin Ruan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinyu Luan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfeng Zhong
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jun Yan
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
13
|
Cao Y, Pang L, Jin S. RBM10 Is a Biomarker Associated with Pan-Cancer Prognosis and Immune Infiltration: System Analysis Combined with In Vitro and Vivo Experiments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7654937. [PMID: 39282149 PMCID: PMC11401663 DOI: 10.1155/2022/7654937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 09/18/2024]
Abstract
RNA binding motif protein 10 (RBM10) is a splicing factor that has been reported to be involved in the occurrence and progression of multiple malignancies. However, the RBM10 involvement in pan-cancer immunotherapy is not clear. In here, we provide the first comprehensive assessment of the prognostic value and immunological function of RBM10 in human pan-cancer utilizing multiple public databases. Data reveal the aberrant RBM10 expression in most tumors, and its expression is positively or negatively linked with the clinical prognosis of various cancers, depending on the different types and subtypes of cancers. In most tumors, RBM10 mutations are frequently occurred, which is closely related to tumor progression. Moreover, our results also show that RBM10 is considerably linked with most of the immune checkpoint genes, tumor immune cell infiltration, tumor mutation burden, and microsatellite instability. Additionally, RBM10 is significantly positively correlated with the sensitivity of trametinib, 17-AAG, PD-0325901, RDEA119, cetuximab, and afatinib, indicating potential antagonism between RBM10 inhibitors and these antitumor drugs, and more likely to develop drug resistance. We also verify that downregulation of RBM10 enhances the malignant phenotype of lung adenocarcinoma cells using in vitro cell experiments, and in vivo animal experiments show that the overexpression of RBM10 reduces the growth of tumors. Furthermore, upregulating RBM10 greatly reduces the PD-L1 protein levels, while silencing RBM10 considerably enhances PD-L1 protein levels. Moreover, the overexpression of RBM10 decreases the protein stability of PD-L1. To sum up, our pan-cancer analysis indicates that RBM10 is a promising biomarker for prognosis and immunotherapy, which provides a new insight for cancer immunotherapy.
Collapse
Affiliation(s)
- Yingyue Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Luyi Pang
- Department of Biomedicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Shi Jin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| |
Collapse
|
14
|
He Y, Chen Y, Yao L, Wang J, Sha X, Wang Y. The Inflamm-Aging Model Identifies Key Risk Factors in Atherosclerosis. Front Genet 2022; 13:865827. [PMID: 35706446 PMCID: PMC9191626 DOI: 10.3389/fgene.2022.865827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis, one of the main threats to human life and health, is driven by abnormal inflammation (i.e., chronic inflammation or oxidative stress) during accelerated aging. Many studies have shown that inflamm-aging exerts a significant impact on the occurrence of atherosclerosis, particularly by inducing an immune homeostasis imbalance. However, the potential mechanism by which inflamm-aging induces atherosclerosis needs to be studied more thoroughly, and there is currently a lack of powerful prediction models.Methods: First, an improved inflamm-aging prediction model was constructed by integrating aging, inflammation, and disease markers with the help of machine learning methods; then, inflamm-aging scores were calculated. In addition, the causal relationship between aging and disease was identified using Mendelian randomization. A series of risk factors were also identified by causal analysis, sensitivity analysis, and network analysis.Results: Our results revealed an accelerated inflamm-aging pattern in atherosclerosis and suggested a causal relationship between inflamm-aging and atherosclerosis. Mechanisms involving inflammation, nutritional balance, vascular homeostasis, and oxidative stress were found to be driving factors of atherosclerosis in the context of inflamm-aging.Conclusion: In summary, we developed a model integrating crucial risk factors in inflamm-aging and atherosclerosis. Our computation pipeline could be used to explore potential mechanisms of related diseases.
Collapse
Affiliation(s)
- Yudan He
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Junyi Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yin Wang,
| |
Collapse
|
15
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
16
|
Li H, Zhang H, Huang G, Bing Z, Xu D, Liu J, Luo H, An X. Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:33. [PMID: 35073964 PMCID: PMC8785590 DOI: 10.1186/s13046-021-02230-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Background Depletion of certain ribosomal proteins induces p53 activation, which is mediated mainly by ribosomal protein L5 (RPL5) and/or ribosomal protein L11 (RPL11). Therefore, RPL5 and RPL11 may link RPs and p53 activation. Thus, this study aimed to explore whether RPs interact with RPL11 and regulate p53 activation in lung adenocarcinoma (LUAD) cells. Methods The endogenous RPL11-binding proteins in A549 cells were pulled down through immunoprecipitation and identified with a proteomics approach. Docking analysis and GST-fusion protein assays were used to analyze the interaction of ribosomal protein S27a (RPS27a) and RPL11. Co-immunoprecipitation and in vitro ubiquitination assays were used to detect the effects of knockdown of RPS27a on the interaction between RPS27a and RPL11, and on p53 accumulation. Cell cycle, apoptosis, cell invasion and migration, cell viability and colony-formation assays were performed in the presence of knockdown of RPS27a. The RPS27a mRNA expression in LUAD was analyzed on the basis of the TCGA dataset, and RPS27a expression was detected through immunohistochemistry in LUAD samples. Finally, RPS27a and p53 expression was analyzed through immunohistochemistry in A549 cell xenografts with knockdown of RPS27a. Results RPS27a was identified as a novel RPL11 binding protein. GST pull-down assays revealed that RPS27a directly bound RPL11. Knockdown of RPS27a weakened the interaction between RPS27a and RPL11, but enhanced the binding of RPL11 and murine double minute 2 (MDM2), thereby inhibiting the ubiquitination and degradation of p53 by MDM2. Knockdown of RPS27a stabilized p53 in an RPL11-dependent manner and induced cell viability inhibition, cell cycle arrest and apoptosis in a p53-dependent manner in A549 cells. The expression of RPS27a was upregulated in LUAD and correlated with LUAD progression and poorer prognosis. Overexpression of RPS27a correlated with upregulation of p53, MDM2 and RPL11 in LUAD clinical specimens. Knockdown of RPS27a increased p53 activation, thus, suppressing the formation of A549 cell xenografts in nude mice. Conclusions RPS27a interacts with RPL11, and RPS27a knockdown enhanced the binding of RPL11 and MDM2, thereby inhibiting MDM2-mediated p53 ubiquitination and degradation; in addition, RPS27a as important roles in LUAD progression and prognosis, and may be a therapeutic target for patients with LUAD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02230-z.
Collapse
|
17
|
Zhang DM, Deng JJ, Wu YG, Tang T, Xiong L, Zheng YF, Xu XM. MicroRNA-223-3p Protect Against Radiation-Induced Cardiac Toxicity by Alleviating Myocardial Oxidative Stress and Programmed Cell Death via Targeting the AMPK Pathway. Front Cell Dev Biol 2022; 9:801661. [PMID: 35111759 PMCID: PMC8801819 DOI: 10.3389/fcell.2021.801661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Radiotherapy improves the survival rate of cancer patients, yet it also involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications, especially the radiotherapy of thoracic tumors, which is characterized by cardiac oxidative stress disorder and programmed cell death. At present, there is no effective treatment strategy for RIHD; in addition, it cannot be reversed when it progresses. This study aims to explore the role and potential mechanism of microRNA-223-3p (miR-223-3p) in RIHD.Methods: Mice were injected with miR-223-3p mimic, inhibitor, or their respective controls in the tail vein and received a single dose of 20 Gy whole-heart irradiation (WHI) for 16 weeks after 3 days to construct a RIHD mouse model. To inhibit adenosine monophosphate activated protein kinase (AMPK) or phosphodiesterase 4D (PDE4D), compound C (CompC) and AAV9-shPDE4D were used.Results: WHI treatment significantly inhibited the expression of miR-223-3p in the hearts; furthermore, the levels of miR-223-3p decreased in a radiation time-dependent manner. miR-223-3p mimic significantly relieved, while miR-223-3p inhibitor aggravated apoptosis, oxidative damage, and cardiac dysfunction in RIHD mice. In addition, we found that miR-223-3p mimic improves WHI-induced myocardial injury by activating AMPK and that the inhibition of AMPK by CompC completely blocks these protective effects of miR-223-3p mimic. Further studies found that miR-223-3p lowers the protein levels of PDE4D and inhibiting PDE4D by AAV9-shPDE4D blocks the WHI-induced myocardial injury mediated by miR-223-3p inhibitor.Conclusion: miR-223-3p ameliorates WHI-induced RIHD through anti-oxidant and anti-programmed cell death mechanisms via activating AMPK by PDE4D regulation. miR-223-3p mimic exhibits potential value in the treatment of RIHD.
Collapse
Affiliation(s)
- Dao-ming Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun-jian Deng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao-gui Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| | - Xi-ming Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| |
Collapse
|