1
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
2
|
Paiella S, Azzolina D, Gregori D, Malleo G, Golan T, Simeone DM, Davis MB, Vacca PG, Crovetto A, Bassi C, Salvia R, Biankin AV, Casolino R. A systematic review and meta-analysis of germline BRCA mutations in pancreatic cancer patients identifies global and racial disparities in access to genetic testing. ESMO Open 2023; 8:100881. [PMID: 36822114 PMCID: PMC10163165 DOI: 10.1016/j.esmoop.2023.100881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Germline BRCA1 and BRCA2 mutations (gBRCAm) can inform pancreatic cancer (PC) risk and treatment but most of the available information is derived from white patients. The ethnic and geographic variability of gBRCAm prevalence and of germline BRCA (gBRCA) testing uptake in PC globally is largely unknown. MATERIALS AND METHODS We carried out a systematic review and prevalence meta-analysis of gBRCA testing and gBRCAm prevalence in PC patients stratified by ethnicity. The main outcome was the distribution of gBRCA testing uptake across diverse populations worldwide. Secondary outcomes included: geographic distribution of gBRCA testing uptake, temporal analysis of gBRCA testing uptake in ethnic groups, and pooled proportion of gBRCAm stratified by ethnicity. The study is listed under PROSPERO registration number #CRD42022311769. RESULTS A total of 51 studies with 16 621 patients were included. Twelve of the studies (23.5%) enrolled white patients only, 10 Asians only (19.6%), and 29 (56.9%) included mixed populations. The pooled prevalence of white, Asian, African American, and Hispanic patients tested per study was 88.7%, 34.8%, 3.6%, and 5.2%, respectively. The majority of included studies were from high-income countries (HICs) (64; 91.2%). Temporal analysis showed a significant increase only in white and Asians patients tested from 2000 to present (P < 0.001). The pooled prevalence of gBRCAm was: 3.3% in white, 1.7% in Asian, and negligible (<0.3%) in African American and Hispanic patients. CONCLUSIONS Data on gBRCA testing and gBRCAm in PC derive mostly from white patients and from HICs. This limits the interpretation of gBRCAm for treating PC across diverse populations and implies substantial global and racial disparities in access to BRCA testing in PC.
Collapse
Affiliation(s)
- S Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/Totuccio83
| | - D Azzolina
- Department of Environmental and Preventive Science, University of Ferrara, Ferrara
| | - D Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy. https://twitter.com/gregoriDario
| | - G Malleo
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/gimalleo
| | - T Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - D M Simeone
- Department of Surgery, New York University, New York; Perlmutter Cancer Center, New York University, New York. https://twitter.com/MadameSurgeon
| | - M B Davis
- Department of Surgery and Surgical Oncology, Weill Cornell University, New York; Englander Institute of Precision Medicine, Weill Cornell University, New York, USA. https://twitter.com/MeliD32
| | - P G Vacca
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/pvhdfm
| | - A Crovetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/crovetto_a
| | - C Bassi
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona
| | - R Salvia
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/SalviaRobi
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; Faculty of Medicine, South Western Sydney Clinical School, University of NSW, Liverpool, Australia.
| | - R Casolino
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow.
| |
Collapse
|
3
|
Topham JT, Renouf DJ, Schaeffer DF. Circulating tumor DNA: toward evolving the clinical paradigm of pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2023; 15:17588359231157651. [PMID: 36895849 PMCID: PMC9989430 DOI: 10.1177/17588359231157651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Over a decade of sequencing-based genomics research has unveiled a diverse somatic mutation landscape across patients with pancreatic ductal adenocarcinoma (PDAC), and the identification of druggable mutations has aligned with the development of novel targeted therapeutics. However, despite these advances, direct translation of years of PDAC genomics research into the clinical care of patients remains a critical and unmet need. Technologies that enabled the initial mapping of the PDAC mutation landscape, namely whole-genome and transcriptome sequencing, remain overly expensive in terms of both time and financial resources. Consequentially, dependence on these technologies to identify the relatively small subset of patients with actionable PDAC alterations has greatly impeded enrollment for clinical trials testing novel targeted therapies. Liquid biopsy tumor profiling using circulating tumor DNA (ctDNA) generates new opportunities by overcoming these challenges while further addressing issues particularly relevant to PDAC, namely, difficulty of obtaining tumor tissue via fine-needle biopsy and the need for faster turnaround time due to rapid disease progression. Meanwhile, ctDNA-based approaches for tracking disease kinetics with respect to surgical and therapeutic interventions offer a means to elevate the current clinical management of PDAC toward higher granularity and accuracy. This review provides a clinically focused summary of ctDNA advances, limitations, and opportunities in PDAC and postulates ctDNA sequencing technology as a catalyst for evolving the clinical decision-making paradigm of this disease.
Collapse
Affiliation(s)
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Division of Anatomic Pathology, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.,Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| |
Collapse
|
4
|
Stoof J, Harrold E, Mariottino S, Lowery MA, Walsh N. DNA Damage Repair Deficiency in Pancreatic Ductal Adenocarcinoma: Preclinical Models and Clinical Perspectives. Front Cell Dev Biol 2021; 9:749490. [PMID: 34712667 PMCID: PMC8546202 DOI: 10.3389/fcell.2021.749490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and survival rates have barely improved in decades. In the era of precision medicine, treatment strategies tailored to disease mutations have revolutionized cancer therapy. Next generation sequencing has found that up to a third of all PDAC tumors contain deleterious mutations in DNA damage repair (DDR) genes, highlighting the importance of these genes in PDAC. The mechanisms by which DDR gene mutations promote tumorigenesis, therapeutic response, and subsequent resistance are still not fully understood. Therefore, an opportunity exists to elucidate these processes and to uncover relevant therapeutic drug combinations and strategies to target DDR deficiency in PDAC. However, a constraint to preclinical research is due to limitations in appropriate laboratory experimental models. Models that effectively recapitulate their original cancer tend to provide high levels of predictivity and effective translation of preclinical findings to the clinic. In this review, we outline the occurrence and role of DDR deficiency in PDAC and provide an overview of clinical trials that target these pathways and the preclinical models such as 2D cell lines, 3D organoids and mouse models [genetically engineered mouse model (GEMM), and patient-derived xenograft (PDX)] used in PDAC DDR deficiency research.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily Harrold
- Trinity College Dublin, Dublin, Ireland
- Mater Private Hospital, Dublin, Ireland
| | - Sarah Mariottino
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Lowery
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi Walsh
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|