1
|
Landis GN, Baybutt B, Das S, Fan Y, Olsen K, Yan K, Tower J. Mifepristone and rapamycin have non-additive benefits for life span in mated female Drosophila. Fly (Austin) 2024; 18:2419151. [PMID: 39440794 PMCID: PMC11514543 DOI: 10.1080/19336934.2024.2419151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The drugs mifepristone and rapamycin were compared for their relative ability to increase the life span of mated female Drosophila melanogaster. Titration of rapamycin indicated an optimal concentration of approximately 50 μM, which increased median life span here by average +81%. Meta-analysis of previous mifepristone titrations indicated an optimal concentration of approximately 466 μM, which increased median life span here by average +114%. Combining mifepristone with various concentrations of rapamycin did not produce further increases in life span, and instead reduced life span relative to either drug alone. Assay of maximum midgut diameter indicated that rapamycin was equally efficacious as mifepristone in reducing mating-induced midgut hypertrophy. The mito-QC mitophagy reporter is a previously described green fluorescent protein (GFP)-mCherry fusion protein targeted to the outer mitochondrial membrane. Inhibition of GFP fluorescence by the acidic environment of the autophagolysosome yields an increased red/green fluorescence ratio indicative of increased mitophagy. Creation of a multi-copy mito-QC reporter strain facilitated assay in live adult flies, as well as in dissected midgut tissue. Mifepristone was equally efficacious as rapamycin in activating the mito-QC mitophagy reporter in the adult female fat-body and midgut. The data suggest that mifepristone and rapamycin act through a common pathway to increase mated female Drosophila life span, and implicate increased mitophagy and decreased midgut hypertrophy in that pathway.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Britta Baybutt
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shoham Das
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yijie Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kate Olsen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karissa Yan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Rossi J, Zedde M, Napoli M, Pascarella R, Pisanello A, Biagini G, Valzania F. Impact of Sex Hormones on Glioblastoma: Sex-Related Differences and Neuroradiological Insights. Life (Basel) 2024; 14:1523. [PMID: 39768232 PMCID: PMC11677825 DOI: 10.3390/life14121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Glioblastoma (GBM) displays significant gender disparities, being 1.6 times more prevalent in men, with a median survival time of 15.0 months for males compared to 25.5 months for females. These differences may be linked to gonadal steroid hormones, particularly testosterone, which interacts with the androgen receptor (AR) to promote tumor proliferation. Conversely, estrogen (E2), progesterone (P4), and P4 metabolites exert more complex effects on GBM. Despite these insights, the identification of reliable hormonal tumor markers remains challenging, and studies investigating hormone therapies yield inconclusive results due to small sample sizes and heterogeneous tumor histology. Additionally, genetic, epigenetic, and immunological factors play critical roles in sex disparities, with female patients demonstrating increased O6-Methylguanine-DNA methyltransferase promoter methylation and greater genomic instability. These complexities highlight the need for personalized therapeutic strategies that integrate hormonal influences alongside other sex-specific biological characteristics in the management of GBM. In this review, we present the current understanding of the potential role of sex hormones in the natural history of GBM.
Collapse
Affiliation(s)
- Jessica Rossi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Anna Pisanello
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| |
Collapse
|
3
|
Posani SH, Gillis NE, Lange CA. Glucocorticoid receptors orchestrate a convergence of host and cellular stress signals in triple negative breast cancer. J Steroid Biochem Mol Biol 2024; 243:106575. [PMID: 38950871 PMCID: PMC11344665 DOI: 10.1016/j.jsbmb.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the nuclear steroid receptors that bind estrogens (ER) and progestogens (PRs) and does not exhibit HER2 (Human epidermal growth factor 2) receptor overexpression. Even in the face of initially effective chemotherapies, TNBC patients often relapse. One primary cause for therapy-resistant tumor progression is the activation of cellular stress signaling pathways. The glucocorticoid receptor (GR), a corticosteroid-activated transcription factor most closely related to PR, is a mediator of both endocrine/host stress and local tumor microenvironment (TME)-derived and cellular stress responses. Interestingly, GR expression is associated with a good prognosis in ER+ breast cancer but predicts poor prognosis in TNBC. Classically, GR's transcriptional activity is regulated by circulating glucocorticoids. Additionally, GR is regulated by ligand-independent signaling events. Notably, the stress-activated protein kinase, p38 MAP kinase, phosphorylates GR at serine 134 (Ser134) in response to TME-derived growth factors and cytokines, including HGF and TGFβ1. Phospho-Ser134-GR (p-Ser134-GR) associates with cytoplasmic and nuclear signaling molecules, including 14-3-3ζ, aryl hydrocarbon receptors (AhR), and hypoxia-inducible factors (HIFs). Phospho-GR/HIF-containing transcriptional complexes upregulate gene sets whose protein products include the components of inducible oncogenic signaling pathways (PTK6) that further promote cancer cell survival, chemoresistance, altered metabolism, and migratory/invasive behavior in TNBC. Recent studies have implicated liganded p-Ser134-GR (p-GR) in dexamethasone-mediated upregulation of genes related to TNBC cell motility and dysregulated metabolism. Herein, we review the tumor-promoting roles of GR and discuss how both ligand-dependent and ligand-independent/stress signaling-driven inputs to p-GR converge to orchestrate metastatic TNBC progression.
Collapse
Affiliation(s)
- Sai Harshita Posani
- Molecular Pharmacology and Therapeutics Program, University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States
| | - Noelle E Gillis
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States; Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States.
| |
Collapse
|
4
|
López-Cortés A, Cabrera-Andrade A, Echeverría-Garcés G, Echeverría-Espinoza P, Pineda-Albán M, Elsitdie N, Bueno-Miño J, Cruz-Segundo CM, Dorado J, Pazos A, Gonzáles-Díaz H, Pérez-Castillo Y, Tejera E, Munteanu CR. Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses. Sci Rep 2024; 14:19359. [PMID: 39169044 PMCID: PMC11339426 DOI: 10.1038/s41598-024-68565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
The druggable proteome refers to proteins that can bind to small molecules with appropriate chemical affinity, inducing a favorable clinical response. Predicting druggable proteins through screening and in silico modeling is imperative for drug design. To contribute to this field, we developed an accurate predictive classifier for druggable cancer-driving proteins using amino acid composition descriptors of protein sequences and 13 machine learning linear and non-linear classifiers. The optimal classifier was achieved with the support vector machine method, utilizing 200 tri-amino acid composition descriptors. The high performance of the model is evident from an area under the receiver operating characteristics (AUROC) of 0.975 ± 0.003 and an accuracy of 0.929 ± 0.006 (threefold cross-validation). The machine learning prediction model was enhanced with multi-omics approaches, including the target-disease evidence score, the shortest pathways to cancer hallmarks, structure-based ligandability assessment, unfavorable prognostic protein analysis, and the oncogenic variome. Additionally, we performed a drug repurposing analysis to identify drugs with the highest affinity capable of targeting the best predicted proteins. As a result, we identified 79 key druggable cancer-driving proteins with the highest ligandability, and 23 of them demonstrated unfavorable prognostic significance across 16 TCGA PanCancer types: CDKN2A, BCL10, ACVR1, CASP8, JAG1, TSC1, NBN, PREX2, PPP2R1A, DNM2, VAV1, ASXL1, TPR, HRAS, BUB1B, ATG7, MARK3, SETD2, CCNE1, MUTYH, CDKN2C, RB1, and SMARCA4. Moreover, we prioritized 11 clinically relevant drugs targeting these proteins. This strategy effectively predicts and prioritizes biomarkers, therapeutic targets, and drugs for in-depth studies in clinical trials. Scripts are available at https://github.com/muntisa/machine-learning-for-druggable-proteins .
Collapse
Affiliation(s)
- Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Micaela Pineda-Albán
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Nicole Elsitdie
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - José Bueno-Miño
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Carlos M Cruz-Segundo
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Tecnológico de Estudios Superiores de Jocotitlán, Jocotitlán, Mexico
| | - Julian Dorado
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| | - Humberto Gonzáles-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Biscay, Spain
| | | | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| |
Collapse
|
5
|
Iftikhar A, Shepherd S, Jones S, Ellis I. Effect of Mifepristone on Migration and Proliferation of Oral Cancer Cells. Int J Mol Sci 2024; 25:8777. [PMID: 39201464 PMCID: PMC11354386 DOI: 10.3390/ijms25168777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Glucocorticoid receptor (GR) overexpression has been linked to increased tumour aggressiveness and treatment resistance. GR antagonists have been shown to enhance treatment effectiveness. Emerging research has investigated mifepristone, a GR antagonist, as an anticancer agent with limited research in the context of oral cancer. This study investigated the effect of mifepristone at micromolar (µM) concentrations of 1, 5, 10 and 20 on the proliferation and migration of oral cancer cells, at 24 and 48 h. Scratch and scatter assays were utilised to assess cell migration, MTT assays were used to measure cell proliferation, Western blotting was used to investigate the expression of GR and the activation of underlying Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signalling pathways, and immunofluorescence (IF) was used to determine the localisation of proteins in HaCaT (immortalised human skin keratinocytes), TYS (oral adeno squamous cell carcinoma), and SAS-H1 cells (squamous cell carcinoma of human tongue). Mifepristone resulted in a dose-dependent reduction in the proliferation of HaCaT, TYS, and SAS-H1 cells. Mifepristone at a concentration of 20 µM effectively reduced collective migration and scattering of oral cancer cells, consistent with the suppression of the PI3K-Akt and MAPK signalling pathways, and reduced expression of N-Cadherin. An elongated cell morphology was, however, observed, which may be linked to the localisation pattern of E-Cadherin in response to mifepristone. Overall, this study found that a high concentration of mifepristone was effective in the suppression of migration and proliferation of oral cancer cells via the inhibition of PI3K-Akt and MAPK signalling pathways. Further investigation is needed to define its impact on epithelial-mesenchymal transition (EMT) markers.
Collapse
Affiliation(s)
| | | | | | - Ian Ellis
- School of Dentistry, University of Dundee, Dundee DD1 4HR, UK; (A.I.); (S.S.); (S.J.)
| |
Collapse
|
6
|
Tevini J, Aminzadeh-Gohari S, Weber DD, Catalano L, Stefan VE, Redl E, Herzog C, Lang R, Widschwendter M, Felder TK, Kofler B. A validated HPLC-MS/MS method for the quantification of systemic mifepristone after subcutaneous application in mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39045617 DOI: 10.1039/d4ay00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Mifepristone (RU486, MIF) is a synthetic steroidal hormone with progesterone and glucocorticoid receptor antagonistic characteristics. MIF is commonly used for pharmalogical abortions, but also for the treatment of endometrial and endocrine disorders. The goal of the study was to establish and validate a targeted HPLC-MS/MS method for the quantification of MIF and one of its active metabolites metapristone (MET) in plasma after subcutaneous implantation of slow-release MIF pellets in female BALB/c mice. Additionally, we aimed to apply the analytical method to tissue of several organs to understand the tissue-specific distribution of both analytes after release into systemic circulation. Sample preparation comprised a simple liquid-liquid extraction with diethylether and required 100 μl of plasma or homogenates of approximately 50 mg of tissue. The presented HPLC-MS/MS method showed high sensitivity with baseline separation of MIF, MET, and the internal standard levonorgestrel within a run time of only 8.0 minutes and comparable limits of quantification for plasma and tissue homogenates ranging from 40 pg ml-1 to 105 pg ml-1 for MIF and MET. The presented study is suitable for murine plasma and tissues and can be easily applied to human samples.
Collapse
Affiliation(s)
- Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Innsbruck, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Elisa Redl
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Innsbruck, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Innsbruck, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Innsbruck, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Women's Cancer, University College London, London, UK
| | - Thomas K Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.
- Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
7
|
Wu J, Lu Q, Zhao J, Ding H, Zhu L, Wang Z, Wu W, Sun S, Wang Q, Zhang B. Mixtures of Doxorubicin-Loaded Micelles and Berberine and Mifepristone Co-Loaded Liposomes Inhibit Breast Cancer Metastasis Based on Regulation of Tumor Microenvironments. ACS APPLIED NANO MATERIALS 2024; 7:10748-10759. [DOI: 10.1021/acsanm.4c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jingliang Wu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Qiao Lu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, P.R. China
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Jialin Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Huajie Ding
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, 262700, P.R. China
| | - Zhiqiang Wang
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, 262700, P.R. China
| | - Wendi Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Shujie Sun
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Qing Wang
- Department of Stomatology, Weifang People’s Hospital, Weifang, 261000, P.R. China
| | - Bo Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, P.R. China
| |
Collapse
|
8
|
Zhuang Y, Zhu L, Chen X, Chen J, Ye Z, Kang J, Wang X, Han Z. Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells. RSC Adv 2024; 14:1952-1961. [PMID: 38192314 PMCID: PMC10772990 DOI: 10.1039/d3ra06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Schiff bases have remarkable anticancer activity and are used for glioma therapy. However, the poor water solubility/dispersibility limits their therapeutic potential in biological systems. To address this issue, carbon dots (CDs) have been utilized to enhance the dispersibility in water and biological efficacy of Schiff bases. The amino groups on the surface of CDs were conjugated effectively with the aldehyde group of terephthalaldehyde to form novel CD-based Schiff bases (CDSBs). The results of the MTT assays demonstrate that CDSBs have significant anticancer activity in glioma GL261 cells and U251 cells, with IC50 values of 17.9 μg mL-1 and 14.9 μg mL-1, respectively. CDSBs have also been found to have good biocompatibility with normal glial cells. The production of reactive oxygen species (ROS) in GL261 glioma cells showed that CDSBs, at a concentration of 44 μg mL-1, resulted in approximately 13 times higher intracellular ROS production than in the control group. These experiments offer evidence that CDSBs induce mitochondrial damage, leading to a reduction in mitochondrial membrane potential in GL261 cells. In particular, in this work, CDs serve not as carriers, but as an integral part of the anticancer drugs, which can expand the role of CDs in cancer treatment.
Collapse
Affiliation(s)
- Yafeng Zhuang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Xiaoping Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Jing Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Jie Kang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Zhizhong Han
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| |
Collapse
|
9
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
10
|
Karena ZV, Shah H, Vaghela H, Chauhan K, Desai PK, Chitalwala AR. Clinical Utility of Mifepristone: Apprising the Expanding Horizons. Cureus 2022; 14:e28318. [PMID: 36158399 PMCID: PMC9499832 DOI: 10.7759/cureus.28318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Mifepristone is a progesterone and glucocorticoid receptor antagonist. Medical abortion with mifepristone and prostaglandin has revolutionized the abortion process extending abortion care to the doors of females. From as low as 2 mg/day to doses extending to 600 mg, from daily dosing to single dosage treatment, mifepristone has a wide perspective in the treatment of various pathologies. Cervical dilatation and myometrial contractility have made the utility of mifepristone feasible for second-trimester termination of pregnancy and induction of labor awaiting Food and Drug Administration approvals. Its anti-progesterone action on the menstrual cycle has a new dimension of use as a contraceptive, as well as use as a menstruation inductive agent. Its role in endometriosis, ectopic pregnancy, and adenomyosis requires more intensive research. Apoptotic action of mifepristone, interference of heterotypic cell adhesion to the basement membrane, cell migration, growth inhibition of various cancer cell lines, decreased epidermal growth factor expression, suppression of invasive and metastatic cancer potential, increase in tumor necrosis factor, downregulation of cyclin-dependent kinase 2, B-cell lymphoma 2, and Nuclear factor kappa B have opened its potential to be explored as anti-cancer treatment and its effects on leiomyoma. The drug needs to be studied more for the prospectus of its anti-glucocorticoid actions in a wider dimension beyond its acquiescence for the treatment of Cushing syndrome.
Collapse
|
11
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Zhong C, Lu Y, Li Y, Xie H, Zhou G, Jia L. Similarities and differences between embryonic implantation and CTC invasion: Exploring the roles of abortifacients in cancer metastasis chemoprevention. Eur J Med Chem 2022; 237:114416. [DOI: 10.1016/j.ejmech.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|
13
|
Zeng W, Jiang H, Wang Y, Wang C, Yu B. TCF3 Induces DNMT1 Expression to Regulate Wnt Signaling Pathway in Glioma. Neurotox Res 2022; 40:721-732. [PMID: 35446002 DOI: 10.1007/s12640-022-00510-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023]
Abstract
The epigenetic alteration is widely understood as the key to cancer initiation. Herein, we intended to clarify the role of transcription factor 3 (TCF3) in the development of glioma and the behind epigenetic mechanism. Through bioinformatics analysis, we identified a TCF3-DNA methyltransferase 1 (DNMT1)-secreted frizzled related protein 1 (SFRP1) axis which was differentially expressed and interacted in gliomas. More specifically, TCF3 activated DNMT1 transcription, and DNMT1 repressed SFRP1 expression. TCF3 and DNMT1 were overexpressed, while SFRP1 was downregulated in glioma. Functionally, TCF3 silencing inhibited cell proliferation and migration, and promoted apoptosis, which were reversed by DNMT1. SFRP1 inhibited the tumor supporting effects of DNMT1 on glioma cells. Moreover, TCF3 downregulation or SFRP1 overexpression inhibited tumorigenesis and enhanced apoptosis of glioma cells, while DNMT1 enhanced tumorigenesis and repressed apoptosis in tumor tissues in vivo. The Wnt pathway was a downstream effector of the TCF3-DNMT1-SFRP1 axis. Collectively, this study determined a novel therapeutic target TCF3 for glioma from the perspective of epigenetic alteration via regulation of SFRP1 expression in a DNMT1-dependent manner.
Collapse
Affiliation(s)
- Wei Zeng
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Haixiao Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Ying Wang
- Department of Paediatrics, Lianyungang Third People's Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Cunzu Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Bo Yu
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, People's Republic of China.
| |
Collapse
|
14
|
Kerkvliet CP, Truong TH, Ostrander JH, Lange CA. Stress sensing within the breast tumor microenvironment: how glucocorticoid receptors live in the moment. Essays Biochem 2021; 65:971-983. [PMID: 34132331 PMCID: PMC8627466 DOI: 10.1042/ebc20200165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.
Collapse
Affiliation(s)
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|