1
|
Stojkova M, Behme D, Barajas Ordonez F, Christ SM, March C, Surov A, Thormann M. Evaluation of brain metastasis edema in breast cancer patients as a marker for Ki-67 and cell count-A single center analysis. Neuroradiol J 2024; 37:178-183. [PMID: 38131219 DOI: 10.1177/19714009231224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Peritumoral edema is an important cause of morbidity and mortality in patients with breast cancer brain metastases (BCBM). The relationship between vasogenic edema and proliferation indices or cell density in BCBM remains poorly understood. PURPOSE To assess the association between tumor volume and peritumoral edema volume and histopathological and immunohistochemical parameters in BCBM. MATERIALS AND METHODS Patients with confirmed BCBM were retrospectively identified. The tumor volume and peritumoral edema volume of each brain metastasis (BM) were semi-automatically calculated in axial T2w and axial T2-fluid attenuated inversion recovery (FLAIR) sequences using the software MIM (Cleveland, Ohio, USA). Edema volume was correlated with histological parameters, including cell count and Ki-67. Sub-analyses were conducted for luminal B, Her2-positive, and tripe negative subgroups. RESULTS Thirty-eight patients were included in the study. There were 24 patients with a single BM. Mean metastasis volume was 31.40 ± 32.52 mL and mean perifocal edema volume was 72.75 ± 58.85 mL. In the overall cohort, no correlation was found between tumor volume and Ki-67 (r = 0.046, p = .782) or cellularity (r = 0.028, p = .877). Correlation between edema volume and Ki-67 was r = 0.002 (p = .989), correlation with cellularity was r = 0.137 (p = .453). No relevant correlation was identified in any subgroup analysis. There was no relevant correlation between BM volume and edema volume. CONCLUSION In patients with breast cancer brain metastases, we did not find linear associations between edema volumes and immunohistochemical features reflecting proliferation potential. Furthermore, there was no relevant correlation between metastasis volume and edema volume.
Collapse
Affiliation(s)
- Marija Stojkova
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Felix Barajas Ordonez
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Sebastian M Christ
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Christine March
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Maximilian Thormann
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
- Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Cellina M, De Padova G, Caldarelli N, Libri D, Cè M, Martinenghi C, Alì M, Papa S, Carrafiello G. Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy. Crit Rev Oncog 2024; 29:1-13. [PMID: 38505877 DOI: 10.1615/critrevoncog.2023050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lung cancer remains a global health challenge, leading to substantial morbidity and mortality. While prevention and early detection strategies have improved, the need for precise diagnosis, prognosis, and treatment remains crucial. In this comprehensive review article, we explore the role of artificial intelligence (AI) in reshaping the management of lung cancer. AI may have different potential applications in lung cancer characterization and outcome prediction. Manual segmentation is a time-consuming task, with high inter-observer variability, that can be replaced by AI-based approaches, including deep learning models such as U-Net, BCDU-Net, and others, to quantify lung nodules and cancers objectively and to extract radiomics features for the characterization of the tissue. AI models have also demonstrated their ability to predict treatment responses, such as immunotherapy and targeted therapy, by integrating radiomic features with clinical data. Additionally, AI-based prognostic models have been developed to identify patients at higher risk and personalize treatment strategies. In conclusion, this review article provides a comprehensive overview of the current state of AI applications in lung cancer management, spanning from segmentation and virtual biopsy to outcome prediction. The evolving role of AI in improving the precision and effectiveness of lung cancer diagnosis and treatment underscores its potential to significantly impact clinical practice and patient outcomes.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Giuseppe De Padova
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Nazarena Caldarelli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Libri
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, Ospedale San Raffaele, Via Olgettina, 60 - 20132 Milan, Italy
| | - Marco Alì
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Sergio Papa
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
3
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Fan Y, Wang X, Dong Y, Cui E, Wang H, Sun X, Su J, Luo Y, Yu T, Jiang X. Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC. Eur Radiol 2023; 33:7902-7912. [PMID: 37142868 DOI: 10.1007/s00330-023-09709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To develop radiomics signatures from multiparametric magnetic resonance imaging (MRI) scans to detect epidermal growth factor receptor (EGFR) mutations and predict the response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM). METHODS We included 230 NSCLC patients with BM treated at our hospital between January 2017 and December 2021 and 80 patients treated at another hospital between July 2014 and October 2021 to form the primary and external validation cohorts, respectively. All patients underwent contrast-enhanced T1-weighted (T1C) and T2-weighted (T2W) MRI, and radiomics features were extracted from both the tumor active area (TAA) and peritumoral edema area (POA) for each patient. The least absolute shrinkage and selection operator (LASSO) was used to identify the most predictive features. Radiomics signatures (RSs) were constructed using logistic regression analysis. RESULTS For predicting the EGFR mutation status, the created RS-EGFR-TAA and RS-EGFR- POA showed similar performance. By combination of TAA and POA, the multi-region combined RS (RS-EGFR-Com) achieved the highest prediction performance, with AUCs of 0.896, 0.856, and 0.889 in the primary training, internal validation, and external validation cohort, respectively. For predicting response to EGFR-TKI, the multi-region combined RS (RS-TKI-Com) generated the highest AUCs in the primary training (AUC = 0.817), internal validation (AUC = 0.788), and external validation (AUC = 0.808) cohort, respectively. CONCLUSIONS Our findings suggested values of multiregional radiomics of BM for predicting EGFR mutations and response to EGFR-TKI. CLINICAL RELEVANCE STATEMENT The application of radiomic analysis of multiparametric brain MRI has proven to be a promising tool to stratify which patients can benefit from EGFR-TKI therapy and to facilitate the precise therapeutics of NSCLC patients with brain metastases. KEY POINTS • Multiregional radiomics can improve efficacy in predicting therapeutic response to EGFR-TKI therapy in NSCLC patients with brain metastasis. • The tumor active area (TAA) and peritumoral edema area (POA) may hold complementary information related to the therapeutic response to EGFR-TKI. • The developed multi-region combined radiomics signature achieved the best predictive performance and may be considered as a potential tool for predicting response to EGFR-TKI.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xinti Wang
- The First Clinical Department, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Enuo Cui
- School of Computer Science and Engineering, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Chen BT, Jin T, Ye N, Chen SW, Rockne RC, Yoon S, Mambetsariev I, Daniel E, Salgia R. Differential Distribution of Brain Metastases from Non-Small Cell Lung Cancer Based on Mutation Status. Brain Sci 2023; 13:1057. [PMID: 37508989 PMCID: PMC10377121 DOI: 10.3390/brainsci13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has a high rate of brain metastasis. The purpose of this study was to assess the differential distribution of brain metastases from primary NSCLC based on mutation status. Brain MRI scans of patients with brain metastases from primary NSCLC were retrospectively analyzed. Brain metastatic tumors were grouped according to mutation status of their primary NSCLC and the neuroimaging features of these brain metastases were analyzed. A total of 110 patients with 1386 brain metastases from primary NSCLC were included in this study. Gray matter density at the tumor center peaked at ~0.6 for all mutations. The median depths of tumors were 7.9 mm, 8.7 mm and 9.1 mm for EGFR, ALK and KRAS mutation groups, respectively (p = 0.044). Brain metastases for the EGFR mutation-positive group were more frequently located in the left cerebellum, left cuneus, left precuneus and right precentral gyrus. In the ALK mutation-positive group, brain metastases were more frequently located in the right middle occipital gyrus, right posterior cingulate, right precuneus, right precentral gyrus and right parietal lobe. In the KRAS mutation-positive patient group, brain metastases were more frequently located in the posterior left cerebellum. Our study showed differential spatial distribution of brain metastases in patients with NSCLC according to their mutation status. Information regarding distribution of brain metastases is clinically relevant as it could be helpful to guide treatment planning for targeted therapy, and for predicting prognosis.
Collapse
Affiliation(s)
- Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Taihao Jin
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ningrong Ye
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Sean W Chen
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Stephanie Yoon
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Ebenezer Daniel
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Hung ND, Dung LV, Vi NH, Hai Anh NT, Hong Phuong LT, Hieu ND, Duc NM. The role of 3-Tesla magnetic resonance perfusion and spectroscopy in distinguishing glioblastoma from solitary brain metastasis. J Clin Imaging Sci 2023; 13:19. [PMID: 37559877 PMCID: PMC10408633 DOI: 10.25259/jcis_49_2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/10/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVES This study aimed to assess the value of magnetic resonance perfusion (MR perfusion) and magnetic resonance spectroscopy (MR spectroscopy) in 3.0-Tesla magnetic resonanceimaging (MRI) for differential diagnosis of glioblastoma (GBM) and solitary brain metastasis (SBM). MATERIAL AND METHODS This retrospective study involved 36 patients, including 24 cases of GBM and 12 of SBM diagnosed using histopathology. All patients underwent a 3.0-Tesla MRI examination with pre-operative MR perfusion and MR spectroscopy. We assessed the differences in age, sex, cerebral blood volume (CBV), relative CBV (rCBV), and the metabolite ratios of choline/N-acetylaspartate (Cho/NAA) and Cho/creatine between the GBM and SBM groups using the Mann-Whitney U-test and Chi-square test. The cutoff value, area under the curve, sensitivity, specificity, positive predictive value, and negative predictive value of the significantly different parameters between these two groups were determined using the receiver operating characteristic curve. RESULTS In MR perfusion, the CBV of the peritumoral region (pCBV) had the highest preoperative predictive value in discriminating GBM from SBM (cutoff: 1.41; sensitivity: 70.83%; and specificity: 83.33%), followed by the ratio of CBV of the solid tumor component to CBV of normal white matter (rCBVt/n) and the ratio of CBV of the pCBV to CBV of normal white matter (rCBVp/n). In MR spectroscopy, the Cho/NAA ratio of the pCBV (pCho/NAA; cutoff: 1.02; sensitivity: 87.50%; and specificity: 75%) and the Cho/NAA ratio of the solid tumor component (tCho/NAA; cutoff: 2.11; sensitivity: 87.50%; and specificity: 66.67%) were significantly different between groups. Moreover, combining these remarkably different parameters increased their diagnostic utility for distinguishing between GBM and SBM. CONCLUSION pCBV, rCBVt/n, rCBVp/n, pCho/NAA, and tCho/NAA are useful indices for differentiating between GBM and SBM. Combining these indices can improve diagnostic performance in distinguishing between these two tumors.
Collapse
Affiliation(s)
- Nguyen Duy Hung
- Department of Radiology, Hanoi Medical University, Ho Chi Minh City, Hanoi, Vietnam
| | - Le Van Dung
- Department of Radiology, Hanoi Medical University, Ho Chi Minh City, Hanoi, Vietnam
| | - Nguyen Ha Vi
- Department of Radiology, Hanoi Medical University, Ho Chi Minh City, Hanoi, Vietnam
| | - Nguyen-Thi Hai Anh
- Department of Radiology, Hanoi Medical University, Ho Chi Minh City, Hanoi, Vietnam
| | | | - Nguyen Dinh Hieu
- Department of Radiology, Hanoi Medical University, Ho Chi Minh City, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Ladbury C, Amini A, Govindarajan A, Mambetsariev I, Raz DJ, Massarelli E, Williams T, Rodin A, Salgia R. Integration of artificial intelligence in lung cancer: Rise of the machine. Cell Rep Med 2023; 4:100933. [PMID: 36738739 PMCID: PMC9975283 DOI: 10.1016/j.xcrm.2023.100933] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
The goal of oncology is to provide the longest possible survival outcomes with the therapeutics that are currently available without sacrificing patients' quality of life. In lung cancer, several data points over a patient's diagnostic and treatment course are relevant to optimizing outcomes in the form of precision medicine, and artificial intelligence (AI) provides the opportunity to use available data from molecular information to radiomics, in combination with patient and tumor characteristics, to help clinicians provide individualized care. In doing so, AI can help create models to identify cancer early in diagnosis and deliver tailored therapy on the basis of available information, both at the time of diagnosis and in real time as they are undergoing treatment. The purpose of this review is to summarize the current literature in AI specific to lung cancer and how it applies to the multidisciplinary team taking care of these complex patients.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA.
| | - Ameish Govindarajan
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Isa Mambetsariev
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Andrei Rodin
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
9
|
Qin X, Wang C, Gong G, Wang L, Su Y, Yin Y. Functional MRI radiomics-based assessment of pelvic bone marrow changes after concurrent chemoradiotherapy for cervical cancer. BMC Cancer 2022; 22:1149. [PMID: 36348290 PMCID: PMC9644624 DOI: 10.1186/s12885-022-10254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives To quantify the dose-response relationship of changes in pelvic bone marrow (PBM) functional MR radiomic features (RF) during concurrent chemoradiotherapy (CCRT) for patients with cervical cancer and establish the correlation with hematologic toxicity to provide a basis for PBM sparing. Methods A total of 54 cervical cancer patients who received CCRT were studied retrospectively. Patients underwent MRI IDEAL IQ and T2 fat suppression (T2fs) scanning pre- and post-CCRT. The PBM RFs were extracted from each region of interest at dose gradients of 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and > 50 Gy, and changes in peripheral blood cell (PBC) counts during radiotherapy were assessed. The dose-response relationship of RF changes and their correlation with PBC changes were investigated. Results White blood cell, neutrophils (ANC) and lymphocyte counts during treatment were decreased by 49.4%, 41.4%, and 76.3%, respectively. Most firstorder features exhibited a significant dose-response relationship, particularly FatFrac IDEAL IQ, which had a maximum dose-response curve slope of 10.09, and WATER IDEAL IQ had a slope of − 7.93. The firstorder-Range in FAT IDEAL IQ and firstorder-10Percentile in T2fs, showed a significant correlation between the changes in ANC counts under the low dose gradient of 5–10 Gy (r = 0.744, -0.654, respectively, p < 0.05). Conclusion Functional MR radiomics can detect microscopic changes in PBM at various dose gradients and provide an objective reference for bone marrow sparing and dose limitation in cervical cancer CCRT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10254-7.
Collapse
|
10
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
11
|
Peng J, Lu F, Huang J, Zhang J, Gong W, Hu Y, Wang J. Development and validation of a pyradiomics signature to predict initial treatment response and prognosis during transarterial chemoembolization in hepatocellular carcinoma. Front Oncol 2022; 12:853254. [PMID: 36324581 PMCID: PMC9618693 DOI: 10.3389/fonc.2022.853254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2023] Open
Abstract
We aimed to develop and validate a pyradiomics model for preoperative prediction of initial treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). To this end, computed tomography (CT) images were acquired from multi-centers. Numerous pyradiomics features were extracted and machine learning approach was used to build a model for predicting initial response of TACE treatment. The predictive accuracy, overall survival (OS), and progression-free survival (PFS) were analyzed. Gene Set Enrichment Analysis (GSEA) was further used to explore signaling pathways in The Cancer Genome Atlas (TCGA)-HCC cohort. Overall, 24 of the 1,209 pyradiomic features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. The pyradiomics signature showed high predictive accuracy across the discovery set (AUC: 0.917, 95% confidence interval [CI]: 86.93-96.39), validation set 1 (AUC: 0.902, 95% CI: 84.81-95.59), and validation set 2 (AUC: 0.911; 95% CI: 83.26-98.98). Based on the classification of pyradiomics model, we found that a group with high values base on pyramidomics score showed good PFS and OS (both P<0.001) and was negatively correlated with glycolysis pathway. The proposed pyradiomics signature could accurately predict initial treatment response and prognosis, which may be helpful for clinicians to better screen patients who are likely to benefit from TACE.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, GuiZhou Medical University, Kaili, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital, GuiZhou Medical University, Kaili, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wuxing Gong
- Department of Oncology, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yong Hu
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Jun Wang
- Department of Oncology, The Third Affiliated Hospital, GuiZhou Medical University, Duyun, China
| |
Collapse
|
12
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
13
|
Fan Y, He L, Yang H, Wang Y, Su J, Hou S, Luo Y, Jiang X. Preoperative MRI-Based Radiomics of Brain Metastasis to Assess T790M Resistance Mutation After EGFR-TKI Treatment in NSCLC. J Magn Reson Imaging 2022; 57:1778-1787. [PMID: 36165534 DOI: 10.1002/jmri.28441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Preoperative assessment of the acquired resistance T790M mutation in patients with metastatic non-small cell lung cancer (NSCLC) based on brain metastasis (BM) is important for early treatment decisions. PURPOSE To investigate preoperative magnetic resonance imaging (MRI)-based radiomics for assessing T790M resistance mutation after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment in NSCLC patients with BM. STUDY TYPE Retrospective. POPULATION One hundred and ten primary NSCLC patients with pathologically confirmed BM and T790M mutation status assessment from two centers divided into primary training (N = 53), internal validation (N = 27), and external validation (N = 30) sets. FIELD STRENGTH/SEQUENCE Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0 T. ASSESSMENT Forty-five (40.9%) patients were T790M-positive and 65 (59.1%) patients were T790M-negative. The tumor active area (TAA) and peritumoral edema area (POA) of BM were delineated on pre-treatment T1CE and T2W images. Radiomics signatures were built based on features selected from TAA (RS-TAA), POA (RS-POA), and their combination (RS-Com) to assess the T790M resistance mutation after EGFR-TKI treatment. STATISTICAL TESTS Receiver operating characteristic (ROC) curves were used to assess the capabilities of the developed RSs. The area under the ROC curves (AUC), sensitivity, and specificity were generated as comparison metrics. RESULTS We identified two features (from TAA) and three features (from POA) that are highly associated with the T790M mutation status. The developed RS-TAA, RS-POA, and RS-Com showed good performance, with AUCs of 0.807, 0.807, and 0.864 in the internal validation, and 0.783, 0.814, and 0.860 in the external validation sets, respectively. DATA CONCLUSION Pretreatment brain MRI of NSCLC patients with BM might effectively detect the T790M resistance mutation, with both TAA and POA having important values. The multi-region combined radiomics signature may have potential to be a new biomarker for assessing T790M mutation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yahong Luo
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Radiomics for Detection of the EGFR Mutation in Liver Metastatic NSCLC. Acad Radiol 2022; 30:1039-1046. [PMID: 35907759 DOI: 10.1016/j.acra.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
Abstract
RATIONALE AND OBJECTIVES The research aims to investigate whether MRI radiomics on hepatic metastasis from primary nonsmall cell lung cancer (NSCLC) can be used to differentiate patients with epidermal growth factor receptor (EGFR) mutations from those with EGFR wild-type, and develop a prediction model based on combination of primary tumor and the metastasis. MATERIALS AND METHODS A total of 130 patients were enrolled between Aug. 2017 and Dec. 2021, all pathologically confirmed harboring hepatic metastasis from primary NSCLC. The pyradiomics was used to extract radiomics features from intra- and peritumoral areas of both primary tumor and metastasis. The least absolute shrinkage and selection operator (LASSO) regression was applied to identify most predictive features and to develop radiomics signatures (RSs) for prediction of the EGFR mutation status. The receiver operating characteristic (ROC) curve analysis was performed to assess the prediction capability of the developed RSs. RESULTS A RS-Primary and a RS-Metastasis were derived from the primary tumor and metastasis, respectively. The RS-Combine by combination of the primary tumor and metastasis achieved the highest prediction performance in the training (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.826 vs. 0.821 vs. 0.908) and testing (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.760 vs. 0.791 vs. 0.884) set. The smoking status showed significant difference between EGFR mutant and wild-type groups (p < 0.05) in the training set. CONCLUSION The study indicates that hepatic metastasis-based radiomics can be used to detect the EGFR mutation. The developed multiorgan combined radiomics signature may be helpful to guide individual treatment strategies for patients with metastatic NSCLC.
Collapse
|
15
|
Jian A, Liu S, Di Ieva A. Artificial Intelligence for Survival Prediction in Brain Tumors on Neuroimaging. Neurosurgery 2022; 91:8-26. [PMID: 35348129 DOI: 10.1227/neu.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Survival prediction of patients affected by brain tumors provides essential information to guide surgical planning, adjuvant treatment selection, and patient counseling. Current reliance on clinical factors, such as Karnofsky Performance Status Scale, and simplistic radiological characteristics are, however, inadequate for survival prediction in tumors such as glioma that demonstrate molecular and clinical heterogeneity with variable survival outcomes. Advances in the domain of artificial intelligence have afforded powerful tools to capture a large number of hidden high-dimensional imaging features that reflect abundant information about tumor structure and physiology. Here, we provide an overview of current literature that apply computational analysis tools such as radiomics and machine learning methods to the pipeline of image preprocessing, tumor segmentation, feature extraction, and construction of classifiers to establish survival prediction models based on neuroimaging. We also discuss challenges relating to the development and evaluation of such models and explore ethical issues surrounding the future use of machine learning predictions.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Royal Melbourne Hospital, Melbourne, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Fan Y, Dong Y, Wang H, Wang H, Sun X, Wang X, Zhao P, Luo Y, Jiang X. Development and externally validate MRI-based nomogram to assess EGFR and T790M mutations in patients with metastatic lung adenocarcinoma. Eur Radiol 2022; 32:6739-6751. [PMID: 35729427 DOI: 10.1007/s00330-022-08955-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aims to explore values of multi-parametric MRI-based radiomics for detecting the epidermal growth factor receptor (EGFR) mutation and resistance (T790M) mutation in lung adenocarcinoma (LA) patients with spinal metastasis. METHODS This study enrolled a group of 160 LA patients from our hospital (between Jan. 2017 and Feb. 2021) to build a primary cohort. An external cohort was developed with 32 patients from another hospital (between Jan. 2017 and Jan. 2021). All patients underwent spinal MRI (including T1-weighted (T1W) and T2-weighted fat-suppressed (T2FS)) scans. Radiomics features were extracted from the metastasis for each patient and selected to develop radiomics signatures (RSs) for detecting the EGFR and T790M mutations. The clinical-radiomics nomogram models were constructed with RSs and important clinical parameters. The receiver operating characteristics (ROC) curve was used to evaluate the predication capabilities of each model. Calibration and decision curve analyses (DCA) were constructed to verify the performance of the models. RESULTS For detecting the EGFR and T790M mutation, the developed RSs comprised 9 and 4 most important features, respectively. The constructed nomogram models incorporating RSs and smoking status showed favorite prediction efficacy, with AUCs of 0.849 (Sen = 0.685, Spe = 0.885), 0.828 (Sen = 0.964, Spe = 0.692), and 0.778 (Sen = 0.611, Spe = 0.929) in the training, internal validation, and external validation sets for detecting the EGFR mutation, respectively, and with AUCs of 0.0.842 (Sen = 0.750, Spe = 0.867), 0.823 (Sen = 0.667, Spe = 0.938), and 0.800 (Sen = 0.875, Spe = 0.800) in the training, internal validation, and external validation sets for detecting the T790M mutation, respectively. CONCLUSIONS Radiomics features from the spinal metastasis were predictive on both EGFR and T790M mutations. The constructed nomogram models can be potentially considered as new markers to guild treatment management in LA patients with spinal metastasis. KEY POINTS • To our knowledge, this study was the first approach to detect the EGFR T790M mutation based on spinal metastasis in patients with lung adenocarcinoma. • We identified 13 MRI features that were strongly associated with the EGFR T790M mutation. • The proposed nomogram models can be considered as potential new markers for detecting EGFR and T790M mutations based on spinal metastasis.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
17
|
Cao R, Pang Z, Wang X, Du Z, Chen H, Liu J, Yue Z, Wang H, Luo Y, Jiang X. Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and externally validate habitat-based MRI radiomics for preoperative prediction of the EGFR mutation status based on brain metastasis (BM) from primary lung adenocarcinoma (LA). Approach. We retrospectively reviewed 150 and 38 patients from hospital 1 and hospital 2 between January 2017 and December 2021 to form a primary and an external validation cohort, respectively. Radiomics features were calculated from the whole tumor (W), tumor active area (TAA) and peritumoral oedema area (POA) in the contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI image. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures (RSs) based on W (RS-W), TAA (RS-TAA), POA (RS-POA) and in combination (RS-Com). The area under receiver operating characteristic curve (AUC) and accuracy analysis were performed to assess the performance of radiomics models. Main results. RS-TAA and RS-POA outperformed RS-W in terms of AUC, ACC and sensitivity. The multi-region combined RS-Com showed the best prediction performance in the primary validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.901 versus 0.699 versus 0.812 versus 0.883) and external validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.900 versus 0.637 versus 0.814 versus 0.842) cohort. Significance. The developed habitat-based radiomics models can accurately detect the EGFR mutation in patients with BM from primary LA, and may provide a preoperative basis for personal treatment planning.
Collapse
|
18
|
Brenner AW, Patel AJ. Review of Current Principles of the Diagnosis and Management of Brain Metastases. Front Oncol 2022; 12:857622. [PMID: 35686091 PMCID: PMC9171239 DOI: 10.3389/fonc.2022.857622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most common intracranial tumors and are increasing in incidence as overall cancer survival improves. Diagnosis of brain metastases involves both clinical examination and magnetic resonance imaging. Treatment may involve a combination of surgery, radiotherapy, and systemic medical therapy depending on the patient's neurologic status, performance status, and overall oncologic burden. Advances in these domains have substantially impacted the management of brain metastases and improved performance status and survival for some patients. Indications for surgery have expanded with improved patient selection, imaging, and intraoperative monitoring. Robust evidence supports the use of whole brain radiotherapy and stereotactic radiosurgery, for both standalone and adjuvant indications, in almost all patients. Lastly, while systemic medical therapy has historically provided little benefit, modern immunotherapeutic agents have demonstrated promise. Current investigation seeks to determine the utility of neoadjuvant radiotherapy and laser interstitial thermal therapy, which have shown benefit in limited studies to date. This article provides a review of the epidemiology, pathology, diagnosis, and treatment of brain metastases and the corresponding supporting evidence.
Collapse
Affiliation(s)
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
20
|
Radiographic markers of breast cancer brain metastases: relation to clinical characteristics and postoperative outcome. Acta Neurochir (Wien) 2022; 164:439-449. [PMID: 34677686 PMCID: PMC8854251 DOI: 10.1007/s00701-021-05026-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Objective Occurrence of brain metastases BM is associated with poor prognosis in patients with breast cancer (BC). Magnetic resonance imaging (MRI) is the standard of care in the diagnosis of BM and determines further treatment strategy. The aim of the present study was to evaluate the association between the radiographic markers of BCBM on MRI with other patients’ characteristics and overall survival (OS). Methods We included 88 female patients who underwent BCBM surgery in our institution from 2008 to 2019. Data on demographic, clinical, and histopathological characteristics of the patients and postoperative survival were collected from the electronic health records. Radiographic features of BM were assessed upon the preoperative MRI. Univariable and multivariable analyses were performed. Results The median OS was 17 months. Of all evaluated radiographic markers of BCBM, only the presence of necrosis was independently associated with OS (14.5 vs 22.5 months, p = 0.027). In turn, intra-tumoral necrosis was more often in individuals with shorter time interval between BC and BM diagnosis (< 3 years, p = 0.035) and preoperative leukocytosis (p = 0.022). Moreover, dural affection of BM was more common in individuals with positive human epidermal growth factor receptor 2 status (p = 0.015) and supratentorial BM location (p = 0.024). Conclusion Intra-tumoral necrosis demonstrated significant association with OS after BM surgery in patients with BC. The radiographic pattern of BM on the preoperative MRI depends on certain tumor and clinical characteristics of patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-05026-4.
Collapse
|
21
|
Tang X, Bai G, Wang H, Guo F, Yin H. Elaboration of Multiparametric MRI-Based Radiomics Signature for the Preoperative Quantitative Identification of the Histological Grade in Patients With Non-Small-Cell Lung Cancer. J Magn Reson Imaging 2022; 56:579-589. [PMID: 35040525 DOI: 10.1002/jmri.28051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The histological grading plays an essential role in the treatment decision of lung cancer. Detected tumors are usually biopsied to confirm histologic grade. How to use MRI extracted radiomics features for accurately grading lung cancer is still challenging. PURPOSE To examine the diagnostic utility of multiparametric MRI radiomics and clinical factors for grading non-small-cell lung cancer (NSCLC). STUDY TYPE Retrospective. POPULATION A total of 148 patients (25.7% female) with postoperative pathologically confirmed NSCLC and divided into the training cohort (N = 110) and the validation cohort (N = 38). FIELD STRENGTH/SEQUENCE A 1.5 T; single-shot turbo spin-echo (TSE), T2-weighted imaging (T2WI), and integrated shimming-echo planar imaging (ISHIM-EPI) diffusion-weighted imaging (DWI). ASSESSMENT A total of 2775 radiomics features were extracted from carcinomatous regions of interest on T2WI, DWI, and the apparent diffusion coefficient (ADC) maps. The five optimal features were selected by using the Student' s t-test, the least absolute shrinkage and selection operator (LASSO) and stepwise regression. The Radscore combined with clinical factors, which selected by univariate and multivariate analyses, to develop a radiomics-clinical nomogram. Its performance was evaluated in the training cohort and the validation cohort. The potential clinical usefulness was analyzed by the receiver operating characteristic curve (ROC), area under the curve (AUC), and the Hosmer-Lemeshow test. STATISTICAL TESTS Student's t-test, univariate analyses, multivariate analyses, LASSO, ROC, AUC, and the Hosmer-Lemeshow test. P < 0.05 was considered statistically significant. RESULTS Favorable discrimination performance was obtained for five optimal features (out of the 2775 features), using the training cohorts (AUC 0.761) and validation cohorts (AUC 0.753). In addition, the radiomics-clinical nomogram significantly improved the ability to identify histological grades in the training cohort (AUC 0.814) and the validation cohort (AUC 0.767). DATA CONCLUSIONS The radiomics-clinical nomogram based on multiparametric MRI might have the potential to distinguish the histological grade of NSCLC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xing Tang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guoyan Bai
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710032, China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
22
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
23
|
Peng J, Huang J, Huang G, Zhang J. Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Front Oncol 2021; 11:730282. [PMID: 34745952 PMCID: PMC8566880 DOI: 10.3389/fonc.2021.730282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives We aimed to develop radiology-based models for the preoperative prediction of the initial treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) since the integration of radiomics and deep learning (DL) has not been reported for TACE. Methods Three hundred and ten intermediate-stage HCC patients who underwent TACE were recruited from three independent medical centers. Based on computed tomography (CT) images, recursive feature elimination (RFE) was used to select the most useful radiomics features. Five radiomics conventional machine learning (cML) models and a DL model were used for training and validation. Mutual correlations between each model were analyzed. The accuracies of integrating clinical variables, cML, and DL models were then evaluated. Results Good predictive accuracies were showed across the two cohorts in the five cML models, especially the random forest algorithm (AUC = 0.967 and 0.964, respectively). DL showed high accuracies in the training and validation cohorts (AUC = 0.981 and 0.972, respectively). Significant mutual correlations were revealed between tumor size and the five cML models and DL model (each P < 0.001). The highest accuracies were achieved by integrating DL and the random forest algorithm in the training and validation cohorts (AUC = 0.995 and 0.994, respectively). Conclusion The radiomics cML models and DL model showed notable accuracy for predicting the initial response to TACE treatment. Moreover, the integrated model could serve as a novel and accurate method for prediction in intermediate-stage HCC.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|