1
|
Gao Y, Slomnicki LP, Kilanczyk E, Forston MD, Pietrzak M, Rouchka EC, Howard RM, Whittemore SR, Hetman M. Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response. ASN Neuro 2024; 16:2371162. [PMID: 39024571 PMCID: PMC11262469 DOI: 10.1080/17590914.2024.2371162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/12/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as Olig2. Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Laveriano-Santos EP, López-Yerena A, Jaime-Rodríguez C, González-Coria J, Lamuela-Raventós RM, Vallverdú-Queralt A, Romanyà J, Pérez M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants (Basel) 2022; 11:antiox11091648. [PMID: 36139723 PMCID: PMC9495970 DOI: 10.3390/antiox11091648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.
Collapse
Affiliation(s)
- Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Johana González-Coria
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Joan Romanyà
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.R.); (M.P.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (J.R.); (M.P.)
| |
Collapse
|