1
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research. Cancers (Basel) 2025; 17:108. [PMID: 39796734 PMCID: PMC11719888 DOI: 10.3390/cancers17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies. Methods: Previously, we collected metadata of academic publications on organoids or organ-on-chip platforms from PubMed, Web of Science, Scopus, EMBASE, and bioRxiv, published between January 2011 and June 2023. Here, we selected documents from this metadata corpus that were computationally determined as relevant to tumor research and analyzed them using an in-house text analysis algorithm. Additionally, we collected and analyzed metadata from ClinicalTrials.gov of clinical studies related to tumor organoids or ToC as of March 2023. Results and Discussion: From 3551 academic publications and 139 clinical trials, we identified 55 and 24 tumor classes modeled as tumor organoids and ToC models, respectively. The research was particularly active in neural and hepatic/pancreatic tumor organoids, as well as gastrointestinal, neural, and reproductive ToC models. Comparative analysis with cancer statistics showed that lung, lymphatic, and cervical tumors were under-represented in tumor organoid research. Our findings also illustrate varied research topics, including tumor physiology, therapeutic approaches, immune cell involvement, and analytical techniques. Mapping the research geographically highlighted the focus on colorectal cancer research in the Netherlands, though overall the specific research focus of countries did not reflect regional cancer prevalence. These insights not only map the current research landscape but also indicate potential new directions in tumor model research.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Richard P. Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
2
|
Kitagawa Y, Kondo S, Fukuyo M, Wakae K, Dochi H, Mizokami H, Komura S, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Wakisaka N, Kaneda A, Yoshizaki T. Phosphoribosyl pyrophosphate amidotransferase: Novel biomarker and therapeutic target for nasopharyngeal carcinoma. Cancer Sci 2024; 115:3587-3595. [PMID: 39196700 PMCID: PMC11531959 DOI: 10.1111/cas.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024] Open
Abstract
Cancer cells show a dynamic metabolic landscape, requiring a sufficient supply of nucleotides to proliferate. They are highly dependent on de novo purine biosynthetic pathways for their nucleotide requirements. Phosphoribosyl pyrophosphate amidotransferase (PPAT), catalyzing the first step of de novo purine biosynthesis, is highly expressed in various cancers. We observed an increased expression of PPAT in nasopharyngeal carcinoma (NPC). Moreover, our ribonucleic acid sequencing analysis showed high PPAT expression in Epstein-Barr virus-positive NPC, which was supported by in vitro analysis. Through a gene knockdown study, we showed that the suppression of PPAT expression reduced the proliferation and invasion of NPC cells. We also demonstrated the regulation of PPAT by glutamine, a cosubstrate for PPAT. A glutamine antagonist, 6-diazo-5-oxo-L-norleucine, blocked glutamine-mediated induction of PPAT and reduced NPC cell proliferation. Immunohistochemical analysis of PPAT in NPC tissues revealed increased expression of PPAT with disease progression, which was significantly associated with poor prognosis. In summary, this study highlighted the biological function of PPAT in NPC, establishing its potential as a novel prognostic biomarker for aggressive NPC and a promising therapeutic target.
Collapse
Affiliation(s)
- Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kousho Wakae
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Naohiro Wakisaka
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| |
Collapse
|
3
|
Yu J, Wang K, Tang Y, Zheng D. Applications and perspectives of tumor organoids in radiobiology (Review). Oncol Rep 2024; 52:100. [PMID: 38904192 PMCID: PMC11223011 DOI: 10.3892/or.2024.8759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Radiotherapy exhibits significant versatility and efficacy in cancer treatment, thereby playing a crucial role in the field of oncology. However, there remains an urgent need for extensive research on various aspects of radiotherapy, including target selection, damage repair and its combination with immunotherapy. Particularly, the development of in vitro models to replicate in vivo tumor lesion responses is vital. The present study provides a thorough review of the establishment and application of tumor organoids in radiotherapy, aiming to explore their potential impact on cancer treatment.
Collapse
Affiliation(s)
- Jin Yu
- Department of Hematology, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Kailun Wang
- Emergency Department, Panshihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Yongjiang Tang
- Department of Vascular Surgery, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| | - Dalin Zheng
- Department of Hematology, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China
| |
Collapse
|
4
|
Dochi H, Kondo S, Komura S, Moriyama-Kita M, Komori T, Nanbo A, Sakaguchi M, Fukuyo M, Hamabe-Horiike T, Tanaka M, Mizokami H, Kano M, Kitagawa Y, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Hanayama R, Kaneda A, Yoshizaki T. Peritumoral SPARC expression induced by exosomes from nasopharyngeal carcinoma infected Epstein-Barr virus: A poor prognostic marker. Int J Cancer 2024; 154:895-911. [PMID: 37907830 DOI: 10.1002/ijc.34777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.
Collapse
Affiliation(s)
- Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Asuka Nanbo
- Department of Virus Infection Dynamics, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Tanaka
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
5
|
Nounsi A, Seitlinger J, Ponté C, Demiselle J, Idoux-Gillet Y, Pencreach E, Beau-Faller M, Lindner V, Balloul JM, Quemeneur E, Burckel H, Noël G, Olland A, Fioretti F, Falcoz PE, Benkirane-Jessel N, Hua G. Patient-Derived Tumoroid for the Prediction of Radiotherapy and Chemotherapy Responses in Non-Small-Cell Lung Cancer. Biomedicines 2023; 11:1824. [PMID: 37509464 PMCID: PMC10376341 DOI: 10.3390/biomedicines11071824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Radiation therapy and platinum-based chemotherapy are common treatments for lung cancer patients. Several factors are considered for the low overall survival rate of lung cancer, such as the patient's physical state and the complex heterogeneity of the tumor, which leads to resistance to the treatment. Consequently, precision medicines are needed for the patients to improve their survival and their quality of life. Until now, no patient-derived tumoroid model has been reported to predict the efficiency of radiation therapy in non-small-cell lung cancer. Using our patient-derived tumoroid model, we report that this model could be used to evaluate the efficiency of radiation therapy and cisplatin-based chemotherapy in non-small-cell lung cancer. In addition, these results can be correlated to clinical outcomes of patients, indicating that this patient-derived tumoroid model can predict the response to radiotherapy and chemotherapy in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Anasse Nounsi
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Faculty of Dental Surgery, Strasbourg University Hospital (HUS), University of Strasbourg, 8 Rue de Ste. Elisabeth, 67000 Strasbourg, France
| | - Joseph Seitlinger
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Charlotte Ponté
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Julien Demiselle
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Department of Medical Intensive Care, Strasbourg University Hospital (HUS), 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Faculty of Dental Surgery, Strasbourg University Hospital (HUS), University of Strasbourg, 8 Rue de Ste. Elisabeth, 67000 Strasbourg, France
| | - Erwan Pencreach
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital (HUS), 67098 Strasbourg, France
| | - Michèle Beau-Faller
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital (HUS), 67098 Strasbourg, France
| | - Véronique Lindner
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Department of Pathology, Strasbourg University Hospital (HUS), 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Jean-Marc Balloul
- Transgene SA, 400 Boulevard Gonthier d'Andernach-Parc d'Innovation-CS80166, 67405 Illkirch Graffenstaden, France
| | - Eric Quemeneur
- Transgene SA, 400 Boulevard Gonthier d'Andernach-Parc d'Innovation-CS80166, 67405 Illkirch Graffenstaden, France
| | - Hélène Burckel
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, 67200 Strasbourg, France
- Radiobiology Laboratory, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67033 Strasbourg, France
- ICube Laboratory, 300 Bd Sébastien Brant, 67400 Illkirch-Graffenstaden, France
| | - Georges Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, 67200 Strasbourg, France
- Radiobiology Laboratory, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67033 Strasbourg, France
- ICube Laboratory, 300 Bd Sébastien Brant, 67400 Illkirch-Graffenstaden, France
| | - Anne Olland
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Lung Transplantation Group, Thoracic Surgery Department, Strasbourg University Hospital (HUS), 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Florence Fioretti
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Faculty of Dental Surgery, Strasbourg University Hospital (HUS), University of Strasbourg, 8 Rue de Ste. Elisabeth, 67000 Strasbourg, France
| | - Pierre-Emmanuel Falcoz
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Lung Transplantation Group, Thoracic Surgery Department, Strasbourg University Hospital (HUS), 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Faculty of Dental Surgery, Strasbourg University Hospital (HUS), University of Strasbourg, 8 Rue de Ste. Elisabeth, 67000 Strasbourg, France
| | - Guoqiang Hua
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Faculty of Dental Surgery, Strasbourg University Hospital (HUS), University of Strasbourg, 8 Rue de Ste. Elisabeth, 67000 Strasbourg, France
| |
Collapse
|
6
|
Qi H, Tan X, Zhang W, Zhou Y, Chen S, Zha D, Wang S, Wen J. The applications and techniques of organoids in head and neck cancer therapy. Front Oncol 2023; 13:1191614. [PMID: 37427120 PMCID: PMC10328716 DOI: 10.3389/fonc.2023.1191614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers on the planet, with approximately 600,000 new cases diagnosed and 300,000 deaths every year. Research into the biological basis of HNC has advanced slowly over the past decades, which has made it difficult to develop new, more effective treatments. The patient-derived organoids (PDOs) are made from patient tumor cells, resembling the features of their tumors, which are high-fidelity models for studying cancer biology and designing new precision medicine therapies. In recent years, considerable effort has been focused on improving "organoids" technologies and identifying tumor-specific medicine using head and neck samples and a variety of organoids. A review of improved techniques and conclusions reported in publications describing the application of these techniques to HNC organoids is presented here. Additionally, we discuss the potential application of organoids in head and neck cancer research as well as the limitations associated with these models. As a result of the integration of organoid models into future precision medicine research and therapeutic profiling programs, the use of organoids will be extremely significant in the future.
Collapse
Affiliation(s)
- Hao Qi
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaolin Tan
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wenshuo Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Shaoyi Chen
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dasong Zha
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyang Wang
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jinming Wen
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
7
|
Seol HS, Oh JH, Choi E, Kim S, Kim H, Nam EJ. Preclinical investigation of patient-derived cervical cancer organoids for precision medicine. J Gynecol Oncol 2022; 34:e35. [PMID: 36659831 PMCID: PMC10157333 DOI: 10.3802/jgo.2023.34.e35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Advanced cervical cancer is still difficult to treat and in the case of recurrent cancer, it is desirable to utilize personalized treatment rather than uniform treatment because the type of recurrence is different for each individual. Therefore, this study aimed to establish a patient-derived organoid (PDO) platform to determine the effects of chemotherapy, radiation therapy, and targeted therapy in cervical cancer. METHODS We established organoids from 4 patients with various types of cervical cancer. The histopathological and gene profiles of these organoid models were compared to determine their characteristics and the maintenance of the patient phenotype. Each type of organoid was also subjected to anticancer drug screening and radiation therapy to evaluate its sensitivity. RESULTS We established PDOs to recapitulate the main elements of the original patient tumors, including the DNA copy number and mutational profile. We selected 7 drugs that showed growth inhibition in cervical cancer organoids out of 171 using an Food and Drug Administration-approved drug library. Moreover, adenocarcinoma and large-cell neuroendocrine carcinoma showed resistance to radiation therapy. whereas squamous cell carcinoma and villoglandular carcinoma showed a significant response to radiotherapy. CONCLUSION Our results showed that patient-derived cervical cancer organoids can be used as a platform for drug and radiation sensitivity testing. These findings suggest that patient-derived cervical cancer organoids could be used as a personalized medicine platform and may provide the best treatment options for patients with various subtypes of cervical cancer.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhye Choi
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - SangMin Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Forsythe SD, Erali RA, Laney P, Sivakumar H, Li W, Skardal A, Soker S, Votanopoulos KI. Application of immune enhanced organoids in modeling personalized Merkel cell carcinoma research. Sci Rep 2022; 12:13865. [PMID: 35974123 PMCID: PMC9380677 DOI: 10.1038/s41598-022-17921-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine cutaneous cancer, with incidence of less than 1/100,000, low survival rates and variable response to chemotherapy or immunotherapy. Herein we explore the application of patient tumor organoids (PTOs) in modeling personalized research in this rare malignancy. Unsorted and non-expanded MCC tumor cells were isolated from surgical specimens and suspended in an ECM based hydrogel, along with patient matched blood and lymph node tissue to generate immune enhanced organoids (iPTOs). Organoids were treated with chemotherapy or immunotherapy agents and efficacy was determined by post-treatment viability. Nine specimens from seven patients were recruited from December 2018-January 2022. Establishment rate was 88.8% (8/9) for PTOs and 77.8% (7/9) for iPTOs. Histology on matched patient tissues and PTOs demonstrated expression of MCC markers. Chemotherapy response was exhibited in 4/6 (66.6%) specimens with cisplatin and doxorubicin as the most effective agents (4/6 PTO sets) while immunotherapy was not effective in tested iPTO sets. Four specimens from two patients demonstrated resistance to pembrolizumab, correlating with the corresponding patient's treatment response. Routine establishment and immune enhancement of MCC PTOs is feasible directly from resected surgical specimens allowing for personalized research and exploration of treatment regimens in the preclinical setting.
Collapse
Affiliation(s)
- Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Organoid Research Center (WFORCE), Winston Salem, USA
| | - Richard A Erali
- Wake Forest Organoid Research Center (WFORCE), Winston Salem, USA
- Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Medical Center Boulevard, Winston Salem, NC, 27157, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, USA
| | - Preston Laney
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Organoid Research Center (WFORCE), Winston Salem, USA
| | - Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Organoid Research Center (WFORCE), Winston Salem, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, USA
| | - Konstantinos I Votanopoulos
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Organoid Research Center (WFORCE), Winston Salem, USA.
- Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Medical Center Boulevard, Winston Salem, NC, 27157, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, USA.
| |
Collapse
|
9
|
Acharya S, Misra R. Hypoxia responsive phytonanotheranostics: A novel paradigm towards fighting cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102549. [PMID: 35301157 DOI: 10.1016/j.nano.2022.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia enhances tumor aggressiveness, thereby reducing the efficacy of anticancer therapies. Phytomedicine, which is nowadays considered as the new panacea owing to its dynamic physiological properties, is often plagued by shortcomings. Incorporating these wonder drugs in nanoparticles (phytonanomedicine) for hypoxia therapy is a new prospect in the direction of cancer management. Similarly, the concept of phytonanotheranostics for the precise tumor lesion detection and treatment monitoring in the hypoxic scenario is going on a rampant speed. In the same line, smart nanoparticles which step in for "on-demand" drug release based on internal or external stimuli are also being explored as a new tool for cancer management. However, studies regarding these smart and tailor-made nanotheranostics in the hypoxic tumor microenvironment are very limited. The present review is an attempt to collate these smart stimuli-responsive phytonanotherapeutics in one place for initiating future research in this upcoming field for better cancer treatment.
Collapse
Affiliation(s)
- Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
10
|
Wang Y, Li Y, Sheng Z, Deng W, Yuan H, Wang S, Liu Y. Advances of Patient-Derived Organoids in Personalized Radiotherapy. Front Oncol 2022; 12:888416. [PMID: 35574360 PMCID: PMC9102799 DOI: 10.3389/fonc.2022.888416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Patient-derived organoids (PDO), based on the advanced three-dimensional (3D) culture technology, can provide more relevant physiological and pathological cancer models, which is especially beneficial for developing and optimizing cancer therapeutic strategies. Radiotherapy (RT) is a cornerstone of curative and palliative cancer treatment, which can be performed alone or integrated with surgery, chemotherapy, immunotherapy, or targeted therapy in clinical care. Among all cancer therapies, RT has great local control, safety and effectiveness, and is also cost-effective per life-year gained for patients. It has been reported that combing RT with chemotherapy or immunotherapy or radiosensitizer drugs may enhance treatment efficacy at faster rates and lower cost. However, very few FDA-approved combinations of RT with drugs or radiosensitizers exist due to the lack of accurate and relevant preclinical models. Meanwhile, radiation dose escalation may increase treatment efficacy and induce more toxicity of normal tissue as well, which has been studied by conducting various clinical trials, very expensive and time-consuming, often burdensome on patients and sometimes with controversial results. The surged PDO technology may help with the preclinical test of RT combination and radiation dose escalation to promote precision radiation oncology, where PDO can recapitulate individual patient’ tumor heterogeneity, retain characteristics of the original tumor, and predict treatment response. This review aims to introduce recent advances in the PDO technology and personalized radiotherapy, highlight the strengths and weaknesses of the PDO cancer models, and finally examine the existing RT-related PDO trials or applications to harness personalized and precision radiotherapy.
Collapse
Affiliation(s)
- Yuenan Wang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Deng
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongyan Yuan
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| |
Collapse
|
11
|
In-vitro 3D modelling for charged particle therapy - Uncertainties and opportunities. Adv Drug Deliv Rev 2021; 179:114018. [PMID: 34688685 DOI: 10.1016/j.addr.2021.114018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Radiation therapy is a critical component of oncologic management, with more than half of all cancer patients requiring radiotherapy at some point during their disease course. Over the last decade, there has been increasing interest in charged particle therapy due to its advantageous physical and radiobiologic properties, with the therapeutic use of proton beam therapy (PBT) expanding worldwide. However, there remain large gaps in our knowledge of the radiobiologic mechanisms that underlie key aspects of PBT, such as variations in relative biologic effectiveness (RBE), radioresistance, DNA damage response and repair pathways, as well as immunologic effects. In addition, while the emerging technique of ultra-high dose rate or FLASH radiotherapy, with its potential to further reduce normal tissue toxicities, is an exciting development, in-depth study is needed into the postulated biochemical mechanisms that underpin the FLASH effect such as the oxygen depletion hypothesis as well as the relative contributions of immune responses and the tumor microenvironment. Further investigation is also required to ensure that the FLASH effect is not diminished or lost in PBT. Current methods to evaluate the biologic effects of charged particle therapy rely heavily on 2D cell culture systems and/or animal models. However, both of these methods have well-recognized limitations which limit translatability of findings from bench to bedside. The advent of novel three-dimensional in-vitro tumor models offers a more physiologically relevant and high throughput in-vitro system for the study of tumor development as well as novel therapeutic approaches such as PBT. Advances in 3D cell culture methods, together with knowledge of disease mechanism, biomarkers, and genomic data, can be used to design personalized 3D models that most closely recapitulate tumor microenvironmental factors promoting a particular disease phenotype, moving 3D models and PBT into the age of precision medicine.
Collapse
|
12
|
Gong L, Kwong DLW, Dai W, Wu P, Wang Y, Lee AWM, Guan XY. The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Front Oncol 2021; 11:744889. [PMID: 34568077 PMCID: PMC8462296 DOI: 10.3389/fonc.2021.744889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
The evolution of the tumor microenvironment (TME) is a cancer-dependent and dynamic process. The TME is often a complex ecosystem with immunosuppressive and tumor-promoting functions. Conventional chemotherapy and radiotherapy, primarily focus on inducing tumor apoptosis and hijacking tumor growth, whereas the tumor-protective microenvironment cannot be altered or destructed. Thus, tumor cells can quickly escape from extraneous attack and develop therapeutic resistance, eventually leading to treatment failure. As an Epstein Barr virus (EBV)-associated malignancy, nasopharyngeal carcinoma (NPC) is frequently infiltrated with varied stromal cells, making its microenvironment a highly heterogeneous and suppressive harbor protecting tumor cells from drug penetration, immune attack, and facilitating tumor development. In the last decade, targeted therapy and immunotherapy have emerged as promising options to treat advanced, metastatic, recurrent, and resistant NPC, but lack of understanding of the TME had hindered the therapeutic development and optimization. Single-cell sequencing of NPC-infiltrating cells has recently deciphered stromal composition and functional dynamics in the TME and non-malignant counterpart. In this review, we aim to depict the stromal landscape of NPC in detail based on recent advances, and propose various microenvironment-based approaches for precision therapy.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|