1
|
Qian C, Huang Y, Zhang S, Yang C, Zheng W, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Integrated identification and mechanism exploration of bioactive ingredients from Salvia miltiorrhiza to induce vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156427. [PMID: 39892310 DOI: 10.1016/j.phymed.2025.156427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The clinical management of ischemic disease and cancer is complex, with disruptions in local vascular function and tumor angiogenesis contributing to blood stasis, which complicates treatment strategies. Salvia miltiorrhiza, a natural product, is known to restore vascular structure and function. However, its specific roles in concurrently addressing ischemic disease and cancer within the same organism remain poorly understood. PURPOSE This study aimed to explore the material basis, pharmacological effects, and underlying mechanisms of Salvia miltiorrhiza extract (SME) in promoting blood flow recovery in ischemic hindlimbs and inducing tumor vascular normalization. METHODS The pharmacological effects of SME were evaluated in a mouse model combining ischemic hindlimbs and tumors. Mice were administered low (SME-L) or high (SME-H) doses of SME daily, and the gastrocnemius muscle mass and tumor vascular structure were assessed. Laser Doppler perfusion imaging (LDPI) was used to monitor hindlimb blood flow recovery and tumor vascular perfusion. The pharmacokinetics of the key bioactive constituents in SME were characterized by liquid chromatography-mass spectrometry (LC-MS). Interactions between SME's active compounds and predicted targets were investigated using molecular docking, microscale thermophoresis (MST), and luciferase reporter assays. The synergistic effects of the primary components, Tanshinone I (Tan I) and Salvianolic acid A (Sal A), were analyzed through tube formation assays, enzyme-linked immunosorbent assays (ELISA), immunofluorescence staining, and western blot. RESULTS Phytochemical profiling revealed that SME contains several active compounds, including Danshensu, Sal A, Sal B, Tan IIA, and Tan I. SME treatment reduced the frequency of necrotic toes, increased muscle mass, and alleviated hypoxia in the gastrocnemius muscle. SME significantly improved tumor vascular perfusion and notably enhanced pericyte coverage and basement membrane integrity. Pharmacokinetic analysis identified Tan I and Sal A as the key bioactive components that promote vascular normalization. Tan I inhibited FoxO1, preventing endothelial cell activation induced by angiopoietin 2 (Ang2), while Sal A bound to Ang2, facilitating Tie2 activation mediated by Ang1. Both in vitro and in vivo results demonstrated that the combination of Tan I and Sal A exerted a synergistic therapeutic effect on correcting abnormal blood vessels in ischemic hindlimbs and tumors. CONCLUSION Our study innovatively revealed a reliable mouse model wherein the Ang2/Tie2 signaling cascade disrupted the endothelial homeostasis to aggravate the progression of hindlimb ischemia and tumor angiogenesis. This balance can be rescued by the combination therapy of Tan I and Sal A that were both from SME, leading to the occurrence of vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Lu J, Li Z, Liu X, Xu B, Zhang W. Tiaogan Bushen Xiaoji Formula Enhances the Sensitivity of Estrogen Receptor- Positive Breast Cancer to Tamoxifen by Inhibiting the TGF-β/SMAD Pathway. Cancer Manag Res 2024; 16:1189-1204. [PMID: 39282606 PMCID: PMC11397187 DOI: 10.2147/cmar.s477399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background The resistance to endocrine therapy can lead to recurrence and metastasis of breast cancer (BC), affecting the survival period. Tiaogan Bushen Xiaoji (TGBSXJ) Formula, a traditional Chinese medicine (TCM) decoction, has been widely used in the treatment of estrogen receptor-positive (ER+) BC. However, the underlying mechanism of TGBSXJ Formula in ER+BC treatment has not been totally elucidated. Methods Network pharmacology (NP) and RNA sequencing were used to predict the candidate ingredients and explore the potential targets of TGBSXJ Formula. Then, the results of NP and RNA sequencing were investigated by in vitro experiments. Results Active ingredients of TGBSXJ Formula mainly included Mangiferin, Rutin, Anemarrhena asphodeloides saponin BII, Ganoderic acid A and Acacetin, etc. A protein-protein interaction (PPI) network was created based on the active ingredients of TGBSXJ Formula and target genes of ER+ BC, in which TGF-β, MMP2 and SMAD3 were defined as the hub genes. In vitro experiments showed that TGBSXJ Formula significantly inhibited the viability, colony ability and migration of ER+ BC cells, and significantly increased the sensitivity to TAM. Western blot analysis showed that TGBSXJ Formula significantly downregulated TGF-β, E-cadherin, MMP2, MMP9, N-cadherin, p-Smad2 and p-Smad3 in ER+ BC cells. Conclusion TGBSXJ Formula increases the sensitivity of ER+ BC cells to TAM by inhibiting the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Jiafeng Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xingjing Liu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Bin Xu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Weiyu Zhang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Chen Q, Liu Y, Zhu Y, Zhu Z, Zou J, Pan Y, Lu Y, Chen W. Cryptotanshinone inhibits PFK-mediated aerobic glycolysis by activating AMPK pathway leading to blockade of cutaneous melanoma. Chin Med 2024; 19:45. [PMID: 38454519 PMCID: PMC10921599 DOI: 10.1186/s13020-024-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Cutaneous melanoma is a kind of skin malignancy with low morbidity but high mortality. Cryptotanshinone (CPT), an important component of salvia miltiorrhiza has potent anti-tumor activity and also indicates therapeutic effect on dermatosis. So we thought that CPT maybe a potential agent for therapy of cutaneous melanoma. METHODS B16F10 and A375 melanoma cells were used for in vitro assay. Tumor graft models were made in C57BL/6N and BALB/c nude mice for in vivo assay. Seahorse XF Glycolysis Stress Test Kit was used to detect extracellular acidification rate and oxygen consumption rate. Si-RNAs were used for knocking down adenosine monophosphate-activated protein kinase (AMPK) expression in melanoma cells. RESULTS CPT could inhibit the proliferation of melanoma cells. Meanwhile, CPT changed the glucose metabolism and inhibited phosphofructokinase (PFK)-mediated glycolysis in melanoma cells to a certain extent. Importantly, CPT activated AMPK and inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Both AMPK inhibitor and silencing AMPK could partially reverse CPT's effect on cell proliferation, cell apoptosis and glycolysis. Finally, in vivo experimental data demonstrated that CPT blocked the growth of melanoma, in which was dependent on the glycolysis-mediated cell proliferation. CONCLUSIONS CPT activated AMPK and then inhibited PFK-mediated aerobic glycolysis leading to inhibition of growth of cutaneous melanoma. CPT should be a promising anti-melanoma agent for clinical melanoma therapy.
Collapse
Affiliation(s)
- Qiong Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunxuan Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyan Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.
| |
Collapse
|
5
|
Wang L, Lyu C, Stadlbauer B, Buchner A, Nößner E, Pohla H. Berbamine targets cancer stem cells and reverses cabazitaxel resistance via inhibiting IGF2BP1 and p-STAT3 in prostate cancer. Prostate 2024; 84:131-147. [PMID: 37828768 DOI: 10.1002/pros.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a small subpopulation of tumor cells with the capability of self-renewal and drug resistance, leading to tumor progression and disease relapse. Our study aimed to investigate the antitumor effect of berbamine, extracted from berberis amurensis, on prostate CSCs. METHODS Sphere formation was used to collect prostate CSCs. The viability, proliferation, invasion, migration, and apoptosis assays were used to evaluate the antitumor effect of berbamine on prostate CSCs. Prostate CSC markers were analyzed by flow cytometry and qRT-PCR. Small RNA sequencing analysis was conducted to analyse miRNAs. Exosomes were extracted using the ExoQuick-TC kit and verified by testing exosomal markers using western blot. RESULTS Berbamine targets prostate CSCs. Additionally, berbamine enhanced the antitumor effect of cabazitaxel, a second-line chemotherapeutic drug for advanced prostate cancer, and re-sensitized Cabazitaxel-resistant PCa cells (CabaR-DU145) to cabazitaxel by inhibiting ABCG2, CXCR4, IGF2BP1, and p-STAT3. Berbamine enhanced the expression of let-7 miRNA family and miR-26b and influenced the downstream targets IGF2BP1 and p-STAT3, respectively. Silencing CXCR4 and ABCG2 downregulated the expression of IGF2BP1 and p-STAT3, respectively. Importantly, berbamine enhanced also levels of exosomal let-7 family and miR-26b, suggesting that berbamine possibly influences the expression of let-7 family and miR-26b through exosome delivery. Exosomes derived from berbamine-treated CabaR-DU145 cells re-sensitized the cells to cabazitaxel. CONCLUSION Berbamine enhanced the toxic activity of cabazitaxel and reversed cabazitaxel resistance potentially through CXCR4/exosomal let-7/IGF2BP1 and ABCG2/exosomal miR-26b/p-STAT3 axes.
Collapse
Affiliation(s)
- Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Elfriede Nößner
- Immunoanalytics: Research Group Tissue Control of Immunocytes, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| |
Collapse
|
6
|
Wu W, Cao Y, Cheng L, Wang L, Yu Q, Peng H, Zhou F, Liu H, Zhang Q. Cryptotanshinone From Salvia miltiorrhiza Inhibits the Growth of Tumors and Enhances the Efficacy of Chemotherapy in a Gastric Cancer Mouse Model. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cryptotanshinone is a quinone diterpene extracted from the traditional Chinese medicine Salvia miltiorrhiza root that shows obvious anticancer activity. The aim of this study was to investigate the mechanism of action of cryptotanshinone as an antigastric cancer agent, as well as a chemotherapy potentiator. A gastric cancer model was established by tumor transplantation, and mice were treated with either 5-fluorouracil or cryptotanshinone, or both drugs. The tumor mass was recorded, and the tumor suppression rate was calculated. Pathological changes were observed by hematoxylin and eosin staining, gene transcription was detected by quantitative polymerase chain reaction, and protein expression by Western blotting. The results showed that cryptotanshinone could reduce the tumor mass, increase the tumor suppression rate, and enhance the chemotherapeutic effect of 5-fluorouracil by a mechanism related to inhibition of the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway.
Collapse
Affiliation(s)
- Wenkai Wu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
| | - Yezhi Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
| | - Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Linghu Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Qingsheng Yu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Hui Peng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Fuhai Zhou
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Haiwei Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Qi Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Institute of Chinese Medicine Surgery, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Dalil D, Iranzadeh S, Kohansal S. Anticancer potential of cryptotanshinone on breast cancer treatment; A narrative review. Front Pharmacol 2022; 13:979634. [PMID: 36188552 PMCID: PMC9523165 DOI: 10.3389/fphar.2022.979634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer has recently been known as the first lethal malignancy in women worldwide. Despite the existing treatments that have improved the patients’ prognosis, some types of breast cancer are serious challenges to treat. Therefore, efforts are underway to provide more efficient therapy. Cryptotanshinone (CPT) is a liposoluble diterpenoid derivation of a traditional Chinese herbal medicine called Salvia miltiorrhiza Bunge. It has been considered in the past decades due to its vast therapeutic properties, including anti-tumor, anti-inflammatory, and anti-fibrosis. Recently, studies have found that CPT showed a significant anti-breast cancer effect in vivo and in vitro through different physiological and immunological mechanisms. This study summarized the latest research findings on the antitumor effect of CPT in breast cancer. Further, the main molecular mechanisms based on breast cancer types and combination with other drugs were reviewed to provide essential evidence for future longitudinal research and its clinical application in breast cancer treatment.
Collapse
|
8
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Acquaviva R, Malfa GA, Loizzo MR, Xiao J, Bianchi S, Tundis R. Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154791. [PMID: 35897965 PMCID: PMC9330018 DOI: 10.3390/molecules27154791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
Extensive research over the past decades has identified numerous phytochemicals that could represent an important source of anti-cancer compounds. There is an immediate need for less toxic and more effective preventive and therapeutic strategies for the treatment of cancer. Natural compounds are considered suitable candidates for the development of new anti-cancer drugs due to their pleiotropic actions on target events with multiple manners. This comprehensive review highlighted the most relevant findings achieved in the screening of phytochemicals for anticancer drug development, particularly focused on a promising class of phytochemicals such as diterpenes with abietane, clerodane, and labdane skeleton. The chemical structure of these compounds, their main natural sources, and mechanisms of action were critically discussed.
Collapse
Affiliation(s)
- Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
| | - Giuseppe A. Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
- Correspondence:
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain;
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| |
Collapse
|
10
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|