1
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Tabrizi-Nezhadi P, MotieGhader H, Maleki M, Sahin S, Nematzadeh S, Torkamanian-Afshar M. Application of Protein-Protein Interaction Network Analysis in Order to Identify Cervical Cancer miRNA and mRNA Biomarkers. ScientificWorldJournal 2023; 2023:6626279. [PMID: 37746664 PMCID: PMC10513823 DOI: 10.1155/2023/6626279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
Cervical cancer (CC) is one of the world's most common and severe cancers. This cancer includes two histological types: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The current study aims at identifying novel potential candidate mRNA and miRNA biomarkers for SCC based on a protein-protein interaction (PPI) and miRNA-mRNA network analysis. The current project utilized a transcriptome profile for normal and SCC samples. First, the PPI network was constructed for the 1335 DEGs, and then, a significant gene module was extracted from the PPI network. Next, a list of miRNAs targeting module's genes was collected from the experimentally validated databases, and a miRNA-mRNA regulatory network was formed. After network analysis, four driver genes were selected from the module's genes including MCM2, MCM10, POLA1, and TONSL and introduced as potential candidate biomarkers for SCC. In addition, two hub miRNAs, including miR-193b-3p and miR-615-3p, were selected from the miRNA-mRNA regulatory network and reported as possible candidate biomarkers. In summary, six potential candidate RNA-based biomarkers consist of four genes containing MCM2, MCM10, POLA1, and TONSL, and two miRNAs containing miR-193b-3p and miR-615-3p are opposed as potential candidate biomarkers for CC.
Collapse
Affiliation(s)
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Masoud Maleki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soner Sahin
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Software Engineering Department, Engineering Faculty, Topkapi University, Istanbul, Turkey
| | - Mahsa Torkamanian-Afshar
- Department of Computer Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
4
|
Li J, Xue X, Zhang Y, Ding F, Wu W, Liu C, Xu Y, Chen H, Ou Q, Shao Y, Li X, Wu F, Wu X. The differences in immune features and genomic profiling between squamous cell carcinoma and adenocarcinoma - A multi-center study in Chinese patients with uterine cervical cancer. Gynecol Oncol 2023; 175:133-141. [PMID: 37356314 DOI: 10.1016/j.ygyno.2023.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Squamous cell carcinoma (SCC) and adenocarcinoma (AC) of the uterine cervix have distinct biological behaviors and different treatment responses. Studies on immune features and genomic profiling of these two pathologic types were limited and mainly focused on small patient cohorts. METHODS From 2014 to 2021, 336 (254 SCC vs. 82 AC) cervical cancer patients who were diagnosed/treated in 7 medical centers in China were enrolled in the study. Next-generation sequencing of 425 cancer-relevant genes was performed on tumor tissues and liquid biopsies. Somatic alterations and immune response-related biomarkers were analyzed. Patient prognosis and immune infiltration were analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS AC tended to have more immunotherapy resistance-related STK11 alterations (P = 0.039), a higher proportion of microsatellite instability (P = 0.21), and more actionable mutations (P = 0.161). In contrast, higher tumor mutational burdens (TMB; P = 0.01), a higher proportion of TMB-high patients (P = 0.016), and more PD-L1-high patients (P = 0.0013) were observed in SCC. Multiple genetic alterations and aberrant signaling pathways were specifically enriched in AC (e.g., TP53, KRAS, ERBB2, and ARID1A alterations) or SCC (e.g., PIK3CA, FBXW7, EP300, and BAP1 mutations). Notably, AC-enriched genetic changes were significantly associated with decreased infiltrations of various B cells, T cells, and dendritic cells, whereas SCC-associated molecular features tended to be associated with increased CD4+ T cell infiltrations. CONCLUSIONS This was the first multi-center study revealing the immunologic and genomic features between SCC and AC in Chinese patients with cervical cancer. Our findings have illustrated the difference in genetic profiles of those two cervical cancer subtypes, which may suggest the possibility of differential treatment regimens, with better immunotherapy efficacy in SCC and targeted therapy options more favorable in AC.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohong Xue
- Department of Gynecology, Obstetrics & Gynecology, Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Gynecology, Weifang People's Hospital, Shandong, China
| | - Fengna Ding
- Department of Gynecologic Oncology, Shandong Linyi Tumor Hospital, Shandong, China
| | - Wenyan Wu
- Department of Obstetrics and Gynecology, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Cuicui Liu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Xu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Hanlin Chen
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinjun Li
- Department of Gynecology, Hebei General Hospital, Hebei, China
| | - Fei Wu
- Department of Gynecology, Maternal and Child Health Hospital of Hunan Province, Hunan, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Lee J, Kim DY, Kim Y, Shin US, Kim KS, Kim EJ. IGFL2-AS1, a Long Non-Coding RNA, Is Associated with Radioresistance in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24020978. [PMID: 36674495 PMCID: PMC9866146 DOI: 10.3390/ijms24020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Precise prediction of radioresistance is an important factor in the treatment of colorectal cancer (CRC). To discover genes that regulate the radioresistance of CRCs, we analyzed an RNA sequencing dataset of patient-originated samples. Among various candidates, IGFL2-AS1, a long non-coding RNA (lncRNA), exhibited an expression pattern that was well correlated with radioresistance. IGFL2-AS1 is known to be highly expressed in various cancers and functions as a competing endogenous RNA. To further investigate the role of IGFL2-AS1 in radioresistance, which has not yet been studied, we assessed the amount of IGFL2-AS1 transcripts in CRC cell lines with varying degrees of radioresistance. This analysis showed that the more radioresistant the cell line, the higher the level of IGFL2-AS1 transcripts-a similar trend was observed in CRC samples. To directly assess the relationship between IGFL2-AS1 and radioresistance, we generated a CRC cell line stably expressing a small hairpin RNA (shRNA) targeting IGFL2-AS1. shRNA-mediated knockdown of IGFL2-AS1 decreased radioresistance and cell migration in vitro, establishing a functional role for IGFL2-AS1 in radioresistance. We also showed that downstream effectors of the AKT pathway played crucial roles. These data suggest that IGFL2-AS1 contributes to the acquisition of radioresistance by regulating the AKT pathway.
Collapse
Affiliation(s)
- Jeeyong Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Younjoo Kim
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ui Sup Shin
- Department of Radiological and Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: ; Tel.: +82-2-970-1363
| |
Collapse
|
7
|
Mao W, Wang S, Chen R, He Y, Lu R, Zheng M. lncRNA NORAD promotes lung cancer progression by competitively binding to miR-28-3p with E2F2. Open Med (Wars) 2022; 17:1538-1549. [PMID: 36245705 PMCID: PMC9520332 DOI: 10.1515/med-2022-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Lung cancer (LC) is a prevailing primary tumor in the lung. lncRNA non-coding RNA activated by DNA damage (NORAD) is a popular target in human cancers. This experiment is designed to probe the mechanism of lncRNA in LC progression. NORAD expression in normal lung epithelial cells and LC cells was examined and then silenced to assess its effect on LC cell proliferation, invasion, and migration. Subcellular localization of NORAD was analyzed through online databases and then corroborated by fractionation of nuclear and cytoplasmic RNA assay. The target binding relations between NORAD and miR-28-3p and between miR-28-3p and E2F2 were verified. Eventually, LC cells with NORAD silencing were transfected with miR-28-3p inhibitor or pcDNA3.1-E2F2 to measure LC cell proliferation, invasion, and migration. NORAD was overexpressed in LC cells and NORAD knockout led to suppressed LC cell proliferation, invasion, and migration. Besides, NORAD targeted miR-28-3p and miR-28-3p targeted E2F2 transcription. Inhibiting miR-28-3p or overexpressing E2F2 could both annul the inhibitory role of si-NORAD in LC cell proliferation, invasion, and migration. Generally, our findings demonstrated that NORAD competitively bound to miR-28-3p with E2F2, to promote LC cell progression.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shengfei Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yijun He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Rongguo Lu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| |
Collapse
|
8
|
Campos-Parra AD, Pérez-Quintanilla M, Martínez-Gutierrez AD, Pérez-Montiel D, Coronel-Martínez J, Millan-Catalan O, De León DC, Pérez-Plasencia C. Molecular Differences between Squamous Cell Carcinoma and Adenocarcinoma Cervical Cancer Subtypes: Potential Prognostic Biomarkers. Curr Oncol 2022; 29:4689-4702. [PMID: 35877232 PMCID: PMC9322365 DOI: 10.3390/curroncol29070372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The most frequently diagnosed histological types of cervical cancer (CC) are squamous cell carcinoma (SCC) and adenocarcinoma (ADC). Clinically, the prognosis of both types is controversial. A molecular profile that distinguishes each histological subtype and predicts the prognosis would be of great benefit to CC patients. Methods: The transcriptome of CC patients from The Cancer Genome Atlas (TCGA) was analyzed using the DESeq2 package to obtain the differentially expressed genes (DEGs) between ADC and SCC. The DEGs were validated on a publicly available Mexican-Mestizo patient transcriptome dataset (GSE56303). The global biological pathways involving the DEGs were obtained using the Webgestalt platform. The associations of the DEGs with Overall Survival (OS) were assessed. Finally, three DEGs were validated by RT-qPCR in an independent cohort of Mexican patients. Results. The molecular profiles of ADC and SCC of the CC patients of the TCGA database and the Mexican-Mestizo cohort (GSE56303) were determined obtaining 1768 and 88 DEGs, respectively. Strikingly, 70 genes were concordant—with similar Log2FoldChange values—in both cohorts. The 70 DEGs were involved in IL-17, JAK/STAT, and Ras signaling. Kaplan-Meier OS analysis from the Mexican-Mestizo cohort showed that higher GABRB2 and TSPAN8 and lower TMEM40 expression were associated with better OS. Similar results were found in an independent Mexican cohort. Conclusions: Molecular differences were detected between the ADC and SCC subtypes; however, further studies are required to define the appropriate prognostic biomarker for each histological type.
Collapse
Affiliation(s)
- Alma D. Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; (A.D.C.-P.); (A.D.M.-G.); (O.M.-C.)
| | - Milagros Pérez-Quintanilla
- Unidad de Investigaciones Biomédicas en Cancer, Instituto Nacional de Cancerología (INCan), Universidad Nacional Autónoma de México (UNAM), Av San Fernando 22, Col. Sección XVI, Mexico City 14080, Mexico; (M.P.-Q.); (J.C.-M.)
| | | | - Delia Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico;
| | - Jaime Coronel-Martínez
- Unidad de Investigaciones Biomédicas en Cancer, Instituto Nacional de Cancerología (INCan), Universidad Nacional Autónoma de México (UNAM), Av San Fernando 22, Col. Sección XVI, Mexico City 14080, Mexico; (M.P.-Q.); (J.C.-M.)
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; (A.D.C.-P.); (A.D.M.-G.); (O.M.-C.)
| | - David Cantú De León
- Unidad de Investigaciones Biomédicas en Cancer, Instituto Nacional de Cancerología (INCan), Universidad Nacional Autónoma de México (UNAM), Av San Fernando 22, Col. Sección XVI, Mexico City 14080, Mexico; (M.P.-Q.); (J.C.-M.)
- Correspondence: (D.C.D.L.); (C.P.-P.); Tel.: +52-55-56231333 (C.P.-P.)
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; (A.D.C.-P.); (A.D.M.-G.); (O.M.-C.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz 54090, Mexico
- Correspondence: (D.C.D.L.); (C.P.-P.); Tel.: +52-55-56231333 (C.P.-P.)
| |
Collapse
|
9
|
Liu M, Wei D, Nie Q, Peng L, He L, Cui Y, Ye Y. Uncovering of potential molecular markers for cervical squamous cell carcinoma (CESC) based on analysis of methylated-differentially expressed genes. Taiwan J Obstet Gynecol 2022; 61:663-671. [PMID: 35779918 DOI: 10.1016/j.tjog.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Cervical squamous cell carcinoma (CESC) is a cancer with high mortality caused by human papillomavirus. The aim of this study was to uncover potential CESC biomarkers to help early diagnosis and treatment. MATERIALS AND METHODS The mRNA transcriptome data and DNA methylation data were downloaded from database for the identification of differentially expressed mRNAs (DEmRNAs) and DNA methylation analysis. Functional analysis was used to reveal the molecular functions. Then, the association between differential methylation and DEmRNA was analyzed. Protein-protein interaction (PPI) network analysis was performed on the selected differentially methylated genes (DEGs). Subsequently, we analyzed the prognosis and constructed a prognostic risk model. We also performed diagnostic analyses of risk model genes. In addition, we verified the protein expression level of identified DEGs. RESULTS 1438 DEmRNAs, 1669 differentially methylated sites (DMSs), 46 differentially methylated CpG islands and 53 differential methylation genes (DMGs) were obtained. In PPI, the highest interaction scores were MX2 and IRF8, and their interaction score was 0.928. Interestingly, 5 DMGs were found to be associated with CESC prognosis. In addition, our results demonstrated that high risk score was associated with poor prognosis of CESC. Furthermore, it was found that ZIK1, ZNRF2, HHEX, VCAM1 could be diagnostic molecular markers for CESC. CONCLUSION Analysis of methylated-differentially expressed genes may contribute to the identification of early diagnosis and therapeutic targets of CESC. In addition, a prognostic model based on 5 DMGs can be used to predict the prognosis of CESC.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Medical Imaging, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, China; The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Dong Wei
- Department of Urology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Qian Nie
- China Physical Examination Center of Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Lili Peng
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Liya He
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Yujie Cui
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Yuquan Ye
- Department of Medical Imaging, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, China; Department of Ultrasound, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China.
| |
Collapse
|
10
|
Ghafouri-Fard S, Hussen BM, Shaterabadi D, Abak A, Shoorei H, Taheri M, Rakhshan A. The Interaction Between Human Papilloma Viruses Related Cancers and Non-coding RNAs. Pathol Res Pract 2022; 234:153939. [DOI: 10.1016/j.prp.2022.153939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
11
|
Pu J, Zhang Y, Wang A, Qin Z, Zhuo C, Li W, Xu Z, Tang Q, Wang J, Wei H. ADORA2A-AS1 Restricts Hepatocellular Carcinoma Progression via Binding HuR and Repressing FSCN1/AKT Axis. Front Oncol 2021; 11:754835. [PMID: 34733789 PMCID: PMC8558402 DOI: 10.3389/fonc.2021.754835] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Increasing evidence revealed that long noncoding RNAs (lncRNAs) were frequently involved in various malignancies. Here, we explored the clinical significances, roles, and mechanisms of lncRNA ADORA2A antisense RNA 1 (ADORA2A-AS1) in HCC. Methods The clinical significances of ADORA2A-AS1 in HCC were analyzed using RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) project. The expressions of ADORA2A-AS1, Fascin Actin-Bundling Protein 1 (FSCN1), Matrix Metallopeptidase 2 (MMP2), and Baculoviral IAP Repeat Containing 7 (BIRC7) in HCC tissues and cells were measured by qRT-PCR. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), caspase-3 activity assay, transwell migration and invasion assays, and xenograft growth and metastasis experiments were performed to evaluate the roles of ADORA2A-AS1 in HCC. RNA pull-down, RNA immunoprecipitation, qRT-PCR, Western blot, and RNA stability assay were performed to elucidate the mechanisms of ADORA2A-AS1 in HCC. Results ADORA2A-AS1 was identified as an HCC-related lncRNA, whose low expression was correlated with advanced stage and poor outcome in HCC. Gain- and loss-of functional experiments demonstrated that ADORA2A-AS1 inhibited HCC cell proliferation, induced cell apoptosis, repressed cell migration and invasion, and repressed xenograft growth and metastasis in vivo. Mechanistically, ADORA2A-AS1 competitively bound HuR (Hu Antigen R), repressed the binding of HuR to FSCN1 transcript, decreased FSCN1 transcript stability, and downregulated FSCN1 expression. The expression of FSCN1 was negatively correlated with ADORA2A-AS1 in HCC tissues. Through downregulating FSCN1, ADORA2A-AS1 repressed AKT pathway activation. Functional rescue assays showed that blocking of FSCN1/AKT axis abrogated the roles of ADORA2A-AS1 in HCC. Conclusion Low-expression ADORA2A-AS1 is correlated with poor survival of HCC patients. ADORA2A-AS1 exerts tumor-suppressive roles in HCC via binding HuR and repressing FSCN1/AKT axis.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya Zhang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zebang Qin
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Chenyi Zhuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|