1
|
Dou Z, Ma XT, Piao MN, Wang JP, Li JL. Overview of the interplay between m6A methylation modification and non-coding RNA and their impact on tumor cells. Transl Cancer Res 2024; 13:3106-3125. [PMID: 38988908 PMCID: PMC11231769 DOI: 10.21037/tcr-23-2401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.
Collapse
Affiliation(s)
- Zheng Dou
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Ting Ma
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Na Piao
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, Li W, Li X, Chen M, Gu L, Sun Y, Xiao Z, Shen J. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther 2024; 31:816-830. [PMID: 38351139 PMCID: PMC11192634 DOI: 10.1038/s41417-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Linwei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
3
|
Yu B, Li X, Yan W, Ding B, Zhang X, Shen S, Xie S, Hu J, Liu H, Chen X, Nie Y, Liu F, Zhang Y, Wang S. Post-transcriptional regulation of tumor suppressor gene lncRNA CARMN via m 6A modification and miRNA regulation in cervical cancer. J Cancer Res Clin Oncol 2023; 149:10307-10318. [PMID: 37273106 DOI: 10.1007/s00432-023-04893-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE The abnormal regulation of lncRNA CARMN has been proved to be a tumor suppressor gene of cervical cancer (CC). However, its role in CC is still elusive. The regulation of CARMN post-transcriptional level by m6A modification and miRNA has not been studied. This study aims to analyze the molecular mechanism of m6A modification and miRNA on the abnormal expression of CARMN in CC cells, so as to provide a new theoretical basis for the diagnosis and treatment of CC. METHODS MeRIP-seq was used to identify the differential m6A-modified genes between tumor and normal cervical tissues. RT-qPCR assay was used to detect gene expression levels in tissues or cells. The m6A modification sites of CARMN was predicted by bioinformatics, and the modification of m6A and its regulatory effect on CARMN were analyzed by MeRIP-qPCR, Actinomycin D assay and RIP assay. RIP-microarray combined with bioinformatics methods to screen miRNAs that may target CARMN. The regulation mechanism between miRNA and CARMN was verified by RT-qPCR, nucleo-plasmic separation assay, mRNA stability assay, dual-luciferase reporter assay, and in vivo experiments. RESULTS MeRIP-seq found that CARMN is a significant different gene in the abundance of m6A in CC, and the modification level of m6A in CC tissues was higher than that in normal cervical tissues. Further, this study verified that m6A reader YTHDF2 could recognize m6A-modified CARMN and promote its degradation in CC cells. miR-21-5p was proved to be the downstream target gene of CARMN, and miR-21-5p could negatively regulate the expression of CARMN. Further experiments showed that miR-21-5p could directly bind to CARMN and lead to the degradation of CARMN. The in vivo experimental results indicated that the level of miR-21-5p in the overexpressed CARMN group was significantly lower than that in the control group. CONCLUSION m6A modification and miR-21-5p play important roles in promoting the occurrence and development of tumors by regulating CARMN, provide new potential targets for the treatment of CC.
Collapse
Affiliation(s)
- Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Aldayyeni H, Hjazi A, Shahab S, Gupta J, Alsaab HO, Motea YH, Alazbjee AAA, Romero-Parra RM, Obaid RF, Hussien BM, Hosseini-Fard SR. Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis. Hum Cell 2023; 36:1656-1671. [PMID: 37378889 DOI: 10.1007/s13577-023-00936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Emerging data indicated that long noncoding RNAs (lncRNAs) are crucial players in the biological processes via regulating epigenetics, transcription, and protein translation. A novel lncRNA, LINC00857, was indicated to upregulate in several types of cancer. In addition, LINC00857 was functionally related to the modulation of the cancer-linked behaviors, including invasion, migration, proliferation, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. The importance of LINC00857 in cancer onset and development proposed that LINC00857 has major importance in the cancer progression and may be considered as a novel prognostic/diagnostic biomarker as well as a treatment target. Here, we retrospectively investigate the available progress in biomedical research investigating the functions of LINC00857 in cancer, focusing on finding the molecular mechanisms affecting various cancer-related behaviors and exploring its clinical applications.
Collapse
Affiliation(s)
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | | | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shen LT, Che LR, He Z, Lu Q, Chen DF, Qin ZY, Wang B. Aberrant RNA m 6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death Dis 2023; 14:236. [PMID: 37015927 PMCID: PMC10072051 DOI: 10.1038/s41419-023-05736-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
Gastrointestinal (GI) cancer is one of the most common malignancies, and a leading cause of cancer-related death worldwide. However, molecular targeted therapies are still lacking, leading to poor treatment efficacies. As an important layer of epigenetic regulation, RNA N6-Methyladenosine (m6A) modification is recently linked to various biological hallmarks of cancer by orchestrating RNA metabolism, including RNA splicing, export, translation, and decay, which is partially involved in a novel biological process termed phase separation. Through these regulatory mechanisms, m6A dictates gene expression in a dynamic and reversible manner and may play oncogenic, tumor suppressive or context-dependent roles in GI tumorigenesis. Therefore, regulators and effectors of m6A, as well as their modified substrates, represent a novel class of molecular targets for cancer treatments. In this review, we comprehensively summarize recent advances in this field and highlight research findings that documented key roles of RNA m6A modification in governing hallmarks of GI cancers. From a historical perspective, milestone findings in m6A machinery are integrated with a timeline of developing m6A targeting compounds. These available chemical compounds, as well as other approaches that target core components of the RNA m6A pathway hold promises for clinical translational to treat human GI cancers. Further investigation on several outstanding issues, e.g. how oncogenic insults may disrupt m6A homeostasis, and how m6A modification impacts on the tumor microenvironment, may dissect novel mechanisms underlying human tumorigenesis and identifies next-generation anti-cancer therapeutics. In this review, we discuss advances in our understanding of m6A RNA modification since its discovery in the 1970s to the latest progress in defining its potential clinic relevance. We summarize the molecular basis and roles of m6A regulators in the hallmarks of GI cancer and discuss their context-dependent functions. Furthermore, the identification and characterization of inhibitors or activators of m6A regulators and their potential anti-cancer effects are discussed. With the rapid growth in this field there is significant potential for developing m6A targeted therapy in GI cancers.
Collapse
Affiliation(s)
- Li-Ting Shen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Department of Internal Medicine, Hospital of Zhejiang Armed Police (PAP), Hangzhou, 310051, China
| | - Lin-Rong Che
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qian Lu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dong-Feng Chen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zhong-Yi Qin
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Xu Y, Yu X, Guo W, He Y. Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Front Immunol 2023; 14:1129298. [PMID: 36875073 PMCID: PMC9982029 DOI: 10.3389/fimmu.2023.1129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
As a prevalent epigenetic modification, the role of m6A has been increasingly highlighted in the alteration of numerous RNAs implicated with multiple biological processes, such as formation, export, translation, and degradation. With further the understanding of m6A, accumulating evidence shows that m6A modification similarly affects metabolic process of non-coding genes. But the specifical interplay of m6A and ncRNAs (non-coding RNAs) in gastrointestinal cancers still lacks complete discussion. Thus, we analyzed and summarized how ncRNAs affect the regulators of m6A and by what means the expression of ncRNAs is altered via m6A in gastrointestinal cancers. We focused on the effect of the interaction of m6A and ncRNAs on the molecular mechanisms of malignant behavior in gastrointestinal cancers, revealing more possibilities of ncRNAs for diagnosis and treatment in term of epigenetic modification.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol 2023; 27:101579. [PMID: 36332600 PMCID: PMC9637816 DOI: 10.1016/j.tranon.2022.101579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Natalia Frías-Reid
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Ana Gabriela Ramos-Delgado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Hania Ruth Zlotnik-Chávez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines; Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, Oslo, Norway.
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico.
| |
Collapse
|
9
|
Ren X, Liu J, Wang R, Liu X, Ma X, Lu Z, Hu Z, Zheng M, Ma J, Li J. Exploring the oncogenic roles of LINC00857 in pan-cancer. Front Pharmacol 2022; 13:996686. [PMID: 36160408 PMCID: PMC9498830 DOI: 10.3389/fphar.2022.996686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Although aberrant LINC00857 expression may play a key role in oncogenesis, no research has analyzed the pan-cancer oncogenic roles of LINC00857, particularly in tumor immunology. Here, we integrated data from several databases to analyze the characteristics of LINC00857 in pan-cancer. We found that LINC00857 was overexpressed and correlated with a poor prognosis in a variety of cancers. Furthermore, high-expression of LINC00857 was negatively associated with immune cell infiltration and immune checkpoint gene expression. Notably, LINC00857 expression was negatively related to microsatellite instability and tumor mutation burden in colorectal cancer, implying poor reaction to immunotherapy when LINC00857 was highly expressed. Targeting LINC00857 could dramatically impair the proliferative ability of colorectal cancer cells. After RNA-sequencing in HCT116 cells, gene set enrichment analysis showed that LINC00857 may accelerate cancer progression by inhibiting the ferroptosis pathway and promoting glycolipid metabolism in colorectal cancer. Screening by weighted gene co-expression network analysis determined PIWIL4 as a target of LINC00857, which also performed an immunosuppressive role in colorectal cancer. Based on the structure of PIWIL4, a number of small molecule drugs were screened out by virtual screening and sensitivity analysis. In summary, LINC00857 expression was closely correlated with an immunosuppressive microenvironment and may be a novel diagnostic and prognostic biomarker for diverse cancers. The LINC00857/PIWIL4 axis may be predictive biomarkers for immunotherapy and valuable molecular targets for malignant tumors.
Collapse
Affiliation(s)
- Xiaomin Ren
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jing Liu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Rui Wang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Mingzhu Zheng
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jingang Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Jiaqiu Li,
| |
Collapse
|
10
|
Xiao L, Huang Y, Li Q, Wang S, Ma L, Fan Z, Tang Z, Yuan X, Liu B. Identification of a prognostic classifier based on EMT-related lncRNAs and the function of LINC01138 in tumor progression for lung adenocarcinoma. Front Mol Biosci 2022; 9:976878. [PMID: 36060239 PMCID: PMC9428519 DOI: 10.3389/fmolb.2022.976878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: This study aimed to develop a prognostic indicator based on epithelial-mesenchymal transition (EMT)-related long noncoding RNAs (lncRNAs) and explore the function of EMT-related lncRNAs in malignant progression in lung adenocarcinoma (LUAD). Materials and methods: A LUAD dataset was acquired from The Cancer Genome Atlas (TCGA) to identify prognostic EMT-related lncRNAs via differential expression analysis and univariate Cox regression analysis. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was utilized for variable selection and model construction. The EMT-related prognostic index (ERPI) was calculated according to the model and served as a classifier to divide LUAD individuals into high-ERPI and low-ERPI groups. A nomogram incorporating ERPI and clinicopathological variables was constructed. TCGA-LUAD, GSE50081, and GSE31210 were used to test the predictive capacity of the ERPI and nomogram. The characteristics of the tumor microenvironment (TME) were evaluated via the ESTIMATE, TIMER, and ssGSEA algorithms. Gene set variation analysis (GSVA) and ssGSEA were used to annotate the functions of the high-ERPI and low-ERPI groups. CCK8, transwell assay, wound-healing assay, and clone formation assay were conducted to clarify the biological functions of prognostic EMT-related lncRNAs. Results: Ninety-seven differentially expressed EMT-related lncRNAs were identified, 15 of which were related to overall survival (OS). A prognostic signature was constructed based on 14 prognostic EMT-related lncRNAs to calculate the ERPI of each patient, and the predictive ability of ERPI was verified in TCGA, GSE50081, and GSE31210. The low-ERPI group survived longer and had a lower percentage of patients in advanced stage than the high-ERPI group. The nomogram had the highest predictive accuracy, followed by ERPI and stage. Patients with low ERPI had higher infiltration degree of immune cells and stronger immune responses than those with high ERPI. A series of in vitro experiments demonstrated that knockdown of LINC01138 dampened variability, proliferation, and motility of A549 and H460 cells. Conclusion: Our study developed a prognostic classifier with robust prognostic performance and clarified the biological functions of LINC01138 in LUAD, aiding in making individual treatments for patients with LUAD and dissecting the mechanism of oncogenesis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| |
Collapse
|
11
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
12
|
Song Y, Qu H. Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer. BMC Cancer 2022; 22:633. [PMID: 35676619 PMCID: PMC9178823 DOI: 10.1186/s12885-022-09591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play an important role in angiogenesis, immune response, inflammatory response and tumor development and metastasis. m6 A (N6—methyladenosine) is one of the most common RNA modifications in eukaryotes. The aim of our research was to investigate the potential prognostic value of m6A-related lncRNAs in ovarian cancer (OC). Methods The data we need for our research was downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Pearson correlation analysis between 21 m6A regulators and lncRNAs was performed to identify m6A-related lncRNAs. Univariate Cox regression analysis was implemented to screen for lncRNAs with prognostic value. A least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analyses was used to further reduct the lncRNAs with prognostic value and construct a m6A-related lncRNAs signature for predicting the prognosis of OC patients. Results Two hundred seventy-five m6A-related lncRNAs were obtained using pearson correlation analysis. 29 m6A-related lncRNAs with prognostic value was selected through univariate Cox regression analysis. Then, a seven m6A-related lncRNAs signature was identified by LASSO Cox regression. Each patient obtained a riskscore through multivariate Cox regression analyses and the patients were classified into high-and low-risk group using the median riskscore as a cutoff. Kaplan–Meier curve revealed that the patients in high-risk group have poor outcome. The receiver operating characteristic curve revealed that the predictive potential of the m6A-related lncRNAs signature for OC was powerful. The predictive potential of the m6A-related lncRNAs signature was successfully validated in the GSE9891, GSE26193 datasets and our clinical specimens. Multivariate analyses suggested that the m6A-related lncRNAs signature was an independent prognostic factor for OC patients. Moreover, a nomogram based on the expression level of the seven m6A-related lncRNAs was established to predict survival rate of patients with OC. Finally, a competing endogenous RNA (ceRNA) network associated with the seven m6A-related lncRNAs was constructed to understand the possible mechanisms of the m6A-related lncRNAs involed in the progression of OC. Conclusions In conclusion, our research revealed that the m6A-related lncRNAs may affect the prognosis of OC patients and identified a seven m6A-related lncRNAs signature to predict the prognosis of OC patients.
Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09591-4.
Collapse
Affiliation(s)
- Yang Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China
| | - Hui Qu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China.
| |
Collapse
|
13
|
Shao D, Li Y, Wu J, Zhang B, Xie S, Zheng X, Jiang Z. An m6A/m5C/m1A/m7G-Related Long Non-coding RNA Signature to Predict Prognosis and Immune Features of Glioma. Front Genet 2022; 13:903117. [PMID: 35692827 PMCID: PMC9178125 DOI: 10.3389/fgene.2022.903117] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Gliomas are the most common and fatal malignant type of tumor of the central nervous system. RNA post-transcriptional modifications, as a frontier and hotspot in the field of epigenetics, have attracted increased attention in recent years. Among such modifications, methylation is most abundant, and encompasses N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1 methyladenosine (m1A), and 7-methylguanosine (m7G) methylation.Methods: RNA-sequencing data from healthy tissue and low-grade glioma samples were downloaded from of The Cancer Genome Atlas database along with clinical information and mutation data from glioblastoma tumor samples. Forty-nine m6A/m5C/m1A/m7G-related genes were identified and an m6A/m5C/m1A/m7G-lncRNA signature of co-expressed long non-coding RNAs selected. Least absolute shrinkage and selection operator Cox regression analysis was used to identify 12 m6A/m5C/m1A/m7G-related lncRNAs associated with the prognostic characteristics of glioma and their correlation with immune function and drug sensitivity analyzed. Furthermore, the Chinese Glioma Genome Atlas dataset was used for model validation.Results: A total of 12 m6A/m5C/m1A/m7G-related genes (AL080276.2, AC092111.1, SOX21-AS1, DNAJC9-AS1, AC025171.1, AL356019.2, AC017104.1, AC099850.3, UNC5B-AS1, AC006064.2, AC010319.4, and AC016822.1) were used to construct a survival and prognosis model, which had good independent prediction ability for patients with glioma. Patients were divided into low and high m6A/m5C/m1A/m7G-LS groups, the latter of which had poor prognosis. In addition, the m6A/m5C/m1A/m7G-LS enabled improved interpretation of the results of enrichment analysis, as well as informing immunotherapy response and drug sensitivity of patients with glioma in different subgroups.Conclusion: In this study we constructed an m6A/m5C/m1A/m7G-LS and established a nomogram model, which can accurately predict the prognosis of patients with glioma and provides direction toward promising immunotherapy strategies for the future.
Collapse
|
14
|
Yin L, Zhou L, Gao S, Feng Y, Zhu H, Xiang J, Xu R. Classification of Hepatocellular Carcinoma Based on N6-Methylandenosine–Related lncRNAs Profiling. Front Mol Biosci 2022; 9:807418. [PMID: 35187083 PMCID: PMC8854774 DOI: 10.3389/fmolb.2022.807418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HCC is one of the most common types of malignancies worldwide and the fourth-leading cause of cancer deaths. Thus, there is an urgent need to search for novel targeted therapies in HCC. 186 m6a-related lncRNAs were screened for subsequent analysis. Two distinct m6A modification clusters were identified to be associated with the overall prognosis in TCGA-LIHC based on the m6A-related lncRNAs profiling, followed by univariate Cox regression analysis. In addition, four m6A-related lncRNAs prognostic signatures were developed and validated that could predict the OS of HCC patients, followed by univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. Moreover, four m6A-related lncRNAs were identified to be related to HCC prognosis. ESTIMATE was used to evaluate the stromal score, immune score, ESTIMATE score, and tumor purity of each HCC sample. ssGSEA was performed to identify the enrichment levels of 29 immune signatures in each sample. Finally, quantitative real-time polymerase chain reaction shown that KDM4A-AS1, BACE1-AS, and NRAV expressions were upregulated in HCC patients. We proved that our m6A-related lncRNAs signature had powerful and robust ability for predicting OS of different HCC subgroups.
Collapse
Affiliation(s)
- Lu Yin
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Lu Yin, ; Liuzhi Zhou,
| | - Liuzhi Zhou
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Lu Yin, ; Liuzhi Zhou,
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yina Feng
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, China
| | - Hanzhang Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rujun Xu
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Yao L, Man CF, He R, He L, Huang JB, Xiang SY, Dai Z, Wang XY, Fan Y. The Interaction Between N 6-Methyladenosine Modification and Non-Coding RNAs in Gastrointestinal Tract Cancers. Front Oncol 2022; 11:784127. [PMID: 35070987 PMCID: PMC8776638 DOI: 10.3389/fonc.2021.784127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common epigenetic modification of eukaryotic RNA, which can participate in the growth and development of the body and a variety of physiological and disease processes by affecting the splicing, processing, localization, transport, translation, and degradation of RNA. Increasing evidence shows that non-coding RNAs, particularly microRNA, long non-coding RNA, and circular RNA, can also regulate the RNA m6A modification process by affecting the expression of m6A-related enzymes. The interaction between m6A modification and non-coding RNAs provides a new perspective for the exploration of the potential mechanism of tumor genesis and development. In this review, we summarize the potential mechanisms and effects of m6A and non-coding RNAs in gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lin Yao
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Lian He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jia-Bin Huang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shou-Yan Xiang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zhe Dai
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Wang
- Digestive Department, The Affiliated Suqian first People's Hospital of Nanjing Medical University, Suqian, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Huang B, Liu J, Lu J, Gao W, Zhou L, Tian F, Wang Y, Luo M, Liu D, Xie C, Xun Z, Liu C, Wang Y, Ma H, Guo J. Aerial View of the Association Between m6A-Related LncRNAs and Clinicopathological Characteristics of Pancreatic Cancer. Front Oncol 2022; 11:812785. [PMID: 35047414 PMCID: PMC8762256 DOI: 10.3389/fonc.2021.812785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor with a poor survival prognosis. We attempted to establish a robust prognostic model to elucidate the clinicopathological association between lncRNA, which may lead to poor prognosis by influencing m6A modification, and pancreatic cancer. We investigated the lncRNAs expression level and the prognostic value in 440 PDAC patients and 171 normal tissues from GTEx, TCGA, and ICGC databases. The bioinformatic analysis and statistical analysis were used to illustrate the relationship. We implemented Pearson correlation analysis to explore the m6A-related lncRNAs, univariate Cox regression and Kaplan-Meier methods were performed to identify the seven prognostic lncRNAs signatures. We inputted them in the LASSO Cox regression to establish a prognostic model in the TCGA database, verified in the ICGC database. The AUC of the ROC curve of the training set is 0.887, while the validation set is 0.711. Each patient has calculated a risk score and divided it into low-risk and high-risk subgroups by the median value. Moreover, the model showed a robust prognostic ability in the stratification analysis of different risk subgroups, pathological grades, and recurrence events. We established a ceRNA network between lncRNAs and m6A regulators. Enrichment analysis indicated that malignancy-associated biological function and signaling pathways were enriched in the high-risk subgroup and m6A-related lncRNAs target mRNA. We have even identified small molecule drugs, such as Thapsigargin, Mepacrine, and Ellipticine, that may affect pancreatic cancer progression. We found that seven lncRNAs were highly expressed in tumor patients in the GTEx-TCGA database, and LncRNA CASC19/UCA1/LINC01094/LINC02323 were confirmed in both pancreatic cell lines and FISH relative quantity. We provided a comprehensive aerial view between m6A-related lncRNAs and pancreatic cancer’s clinicopathological characteristics, and performed experiments to verify the robustness of the prognostic model.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyan Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Tian
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjie Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Liu
- Department of Mathematics, Jinan University, Guangzhou, China
| | - Congyong Xie
- Department of Mathematics, Jinan University, Guangzhou, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Ma
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Song Y, Liang Y, Zou Q, Zeng S, Lin H, Liu M, Liu X, Du J, Chen G, Zou L, Su W, Niu F. LINC00857 promotes the proliferation of pancreatic cancer via MET, STAT3, and CREB. J Gastrointest Oncol 2021; 12:2622-2630. [PMID: 35070392 PMCID: PMC8748069 DOI: 10.21037/jgo-21-723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) LINC00857 promotes cell proliferation in various cancers and is overexpressed in pancreatic cancer (PC). However, the role of LINC00857 in PC is yet to be clarified. METHODS In this study, we used Gene Expression Profiling Interactive Analysis (GEPIA) to investigate transcriptional data of LINC00857 in different cancers. We determined LINC00857 expression in 4 PC cell lines, and one normal pancreatic cell line by quantitative real-time reverse transcription PCR (qRT-PCR). small interfering RNA (siRNA) was employed to specifically knockdown LINC00857 in BxPc3 and PANC1 cells. Cell proliferation was evaluated using WST-1. Western blotting analysis was used to detect the expression levels of downstream proteins of LINC00857. RESULTS We revealed that the knockdown of LINC00857 in PC cell lines inhibited the proliferation of the PC cells. We found that LINC00857 downregulation was followed by the downregulation of oncogenic proteins mesenchymal-epithelial transition (MET), signal transducer and activator of transcription 3 (STAT3), and cAMP response element-binding protein (CREB). CONCLUSIONS Our study indicated that LINC00857 regulated the expression of STAT3 and CREB via regulating the expression of MET, and consequently promoted the growth of PC cells. The results allowed us to deepen our understanding of the pathogenesis of PC and provided a potential target for the clinical treatment of PC.
Collapse
Affiliation(s)
- Ye Song
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yingying Liang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Qingfeng Zou
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | | | - Hanhong Lin
- Guangzhou Medical University, Guangzhou, China
| | - Meiyuan Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jike Du
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zou
- Department of Organ Transplant, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feiyu Niu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang E, Li Y, Ming R, Wei J, Du P, Zhou P, Zong S, Xiao H. The Prognostic Value and Immune Landscapes of a m 6A/m 5C/m 1A-Related LncRNAs Signature in Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:718974. [PMID: 34917609 PMCID: PMC8670092 DOI: 10.3389/fcell.2021.718974] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A) are the main RNA methylation modifications involved in the progression of cancer. However, it is still unclear whether m6A/m5C/m1A-related long non-coding RNAs (lncRNAs) affect the prognosis of head and neck squamous cell carcinoma (HNSCC). Methods: We summarized 52 m6A/m5C/m1A-related genes, downloaded 44 normal samples and 501 HNSCC tumor samples with RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) database, and then searched for m6A/m5C/m1A-related genes co-expressed lncRNAs. We adopt the least absolute shrinkage and selection operator (LASSO) Cox regression to obtain m6A/m5C/m1A-related lncRNAs to construct a prognostic signature of HNSCC. Results: This prognostic signature is based on six m6A/m5C/m1A-related lncRNAs (AL035587.1, AC009121.3, AF131215.5, FMR1-IT1, AC106820.5, PTOV1-AS2). It was found that the high-risk subgroup has worse overall survival (OS) than the low-risk subgroup. Moreover, the results showed that most immune checkpoint genes were significantly different between the two risk groups (p < 0.05). Immunity microenvironment analysis showed that the contents of NK cell resting, macrophages M2, and neutrophils in samples of low-risk group were significantly lower than those of high-risk group (p < 0.05), while the contents of B cells navie, plasma cells, and T cells regulatory (Tregs) were on the contrary (p < 0.05). In addition, patients with high tumor mutational burden (TMB) had the worse overall survival than those with low tumor mutational burden. Conclusion: Our study elucidated how m6A/m5C/m1A-related lncRNAs are related to the prognosis, immune microenvironment, and TMB of HNSCC. In the future, these m6A/m5C/m1A-related lncRNAs may become a new choice for immunotherapy of HNSCC.
Collapse
Affiliation(s)
- Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Song W, Ren J, Yuan W, Xiang R, Ge Y, Fu T. N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients. Genes (Basel) 2021; 12:genes12091375. [PMID: 34573357 PMCID: PMC8472391 DOI: 10.3390/genes12091375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The N6-methyladenosine (m6A) RNA modification can modify long non-coding RNAs (lncRNAs), thereby affecting the tumorigenesis and progression of tumors. However, the underlying role of m6A-modified lncRNAs in colorectal cancer (CRC) remains largely unknown. Therefore, our aim was to assess the prognostic value of m6A-modified lncRNAs in CRC patients. Methods: The gene expression and clinicopathological data of CRC were extracted from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was used to investigate the m6A-modified lncRNAs. Consensus clustering was conducted to identify molecular subtypes of CRC, and the clinical significance of molecular subtypes was identified. The least absolute shrinkage and selection operator analysis (LASSO) was applied to establish a risk signature. Finally, a prognostic nomogram with risk score and clinicopathological variables was established. Results: In total, 29 m6A-modified lncRNAs were identified as prognostic lncRNAs. Two molecular clusters were identified and significant differences were found with respect to clinicopathological features and prognosis. Cluster1 is associated with poor overall survival (OS), down-regulation of Programmed cell death ligand-1 (PD-L1) expression, lower immune score, and less immune cell infiltration. Then, an m6A-modified lncRNA signature for predicting OS was constructed in the TCGA training cohort. The signature demonstrated favorable prediction performance in both training and validation sets. Compared with low-risk patients, patients with high risk showed worse clinical outcomes, lower immune scores, and downregulated PD-L1 expression. Further analysis indicated that the signature was an independent prognostic indicator, and then a prognostic nomogram based on risk score, tumor location, and tumor stage was established. Conclusions: Our study identified a seven m6A-modified lncRNA signature and established a prognostic nomogram that reliably predicts OS in CRC. These findings may improve the understanding of m6A modifications in CRC and provide insights into the prognosis and treatment strategy of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Fu
- Correspondence: ; Tel./Fax: +86-027-88041911-81333
| |
Collapse
|
20
|
Zhang Y, Zhu B, He M, Cai Y, Ying X, Jiang C, Ji W, Zeng J. N6-Methylandenosine-Related lncRNAs Predict Prognosis and Immunotherapy Response in Bladder Cancer. Front Oncol 2021; 11:710767. [PMID: 34458149 PMCID: PMC8387102 DOI: 10.3389/fonc.2021.710767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
Both lncRNAs and the N6-methyladenosine (m6A) modification are key regulators of tumorigenesis and innate immunity. However, little is known about the m6A modification of lncRNAs and their clinical and immune relevance in bladder cancer. In this study, we identified m6A-related lncRNAs using Pearson correlation analysis in The Cancer Genome Atlas (TCGA) and the IMvigor210 datasets. Next, univariate Cox regression was performed using the TCGA dataset to filter prognostic m6A-related lncRNAs, which were further subjected to the least absolute shrinkage and selection operator (LASSO) Cox regression to establish a 12 m6A-related lncRNA prognostic score (m6A-LRS). The m6A-LRS was validated in the IMvigor210 dataset. In addition, high m6A-LRS tumors, characterized by decreased tumor mutation load and neoantigen load, showed poorer response to immunotherapy than those with low m6A-LRS in the IMvigor210 dataset. Further, we constructed an m6A-LRS-based nomogram that demonstrated a strong ability to predict overall survival in patients with bladder cancer. Moreover, enrichment analysis revealed that tumor-associated biological processes, oncogenic signaling, and tumor hallmarks were commonly associated with a high m6A-LRS. Gene set variation analysis also indicated that high m6A-LRS was associated with activation of canonical oncogenic signatures, such as the epithelial-to-mesenchymal transition, cell cycle regulators, and DNA replication, as well as activation of immunosuppressive signatures, such as the T-cell exhaustion and pan-fibroblast-TGF-β response signatures. Furthermore, we observed distinct tumor microenvironment cell infiltration characteristics between high- and low-risk tumors. High m6A-LRS tumors showed reduced infiltration of CD8+ T-cells and enhanced infiltration of macrophages and fibroblasts. Additionally, we established a competing endogenous RNA network based on the12 m6A-related lncRNAs. Finally, three lncRNAs (SNHG16, SBF2-AS1, and BDNF-AS) were selected for further validation. The qualitative PCR assay on 10 pairs of bladder cancer and adjacent normal control samples validated the differential expression, and methylated RNA immunoprecipitation (MeRIP) analysis demonstrated a robust m6A enrichment in T24 bladder cancer cells compared with normal uroepithelial cells (SVHUC-1). In conclusion, this study introduced an m6A-related lncRNA signature that identified a subgroup of patients with poor prognoses and suboptimal immune responses, thus providing novel approaches for treatment response prediction and patient stratification in bladder cancer.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, China
| | - Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, China
| | - Minghui He
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, China
| |
Collapse
|
21
|
Han J, Wang P, Xia X, Zhang L, Zhang H, Huang Y, Li X, Zhao W, Zhang L. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med 2021; 25:8479-8489. [PMID: 34346162 PMCID: PMC8419195 DOI: 10.1111/jcmm.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
Scutellarin, an active flavone extracted from Erigeron breviscapus, is known to exhibit antitumour activity in many cancers. However, the effects of Scutellarin on osteosarcoma remain unclear. In this study, we found that Scutellarin suppressed osteosarcoma cell growth, induced cell apoptosis and inhibited tumorigenesis. Mechanistically, our data revealed that EGR1 was significantly increased under Scutellarin treatment. Increased EGR1 enhanced tumour‐suppressive effects of Scutellarin on osteosarcoma cells via transcriptionally downregulating LINC00857 expression. Additionally, we found that LINC00857 acted as a competitive endogenous RNA of miR‐150‐5p and inhibited the activity of miR‐150‐5p, which resulted in c‐Myc increase. Scutellarin could suppress c‐Myc protein levels through decreasing LINC00857 expression in osteosarcoma. Thus, these findings demonstrate that EGR1/ LINC00857/miR‐150‐5p/c‐Myc axis plays a key role in promoting anticancer effects of Scutellarin and Scutellarin might have potential clinical implication in osteosarcoma clinical treatment.
Collapse
Affiliation(s)
- Jian Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Peng Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xin Xia
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - He Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Huang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenzhi Zhao
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Garikipati VNS, Uchida S. Elucidating the Functions of Non-Coding RNAs from the Perspective of RNA Modifications. Noncoding RNA 2021; 7:ncrna7020031. [PMID: 34065036 PMCID: PMC8163165 DOI: 10.3390/ncrna7020031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
It is now commonly accepted that most of the mammalian genome is transcribed as RNA, yet less than 2% of such RNA encode for proteins. A majority of transcribed RNA exists as non-protein-coding RNAs (ncRNAs) with various functions. Because of the lack of sequence homologies among most ncRNAs species, it is difficult to infer the potential functions of ncRNAs by examining sequence patterns, such as catalytic domains, as in the case of proteins. Added to the existing complexity of predicting the functions of the ever-growing number of ncRNAs, increasing evidence suggests that various enzymes modify ncRNAs (e.g., ADARs, METTL3, and METTL14), which has opened up a new field of study called epitranscriptomics. Here, we examine the current status of ncRNA research from the perspective of epitranscriptomics.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Frederikskaj 10B, 2. (building C), DK-2450 Copenhagen SV, Denmark
- Correspondence: or
| |
Collapse
|
23
|
Lan Y, Liu B, Guo H. The role of M 6A modification in the regulation of tumor-related lncRNAs. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:768-779. [PMID: 33996258 PMCID: PMC8094576 DOI: 10.1016/j.omtn.2021.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant modification in eukaryotic cells, and it regulates RNA transcription, processing, splicing, degradation, and translation. Long non-coding RNAs (lncRNAs), as transcriptional products with no or limited protein coding ability more than 200 nt in length, play an important role in epigenetic modification, mRNA transcription, splicing, stability, translation, and other biological functions. Extensive studies have shown that both m6A modification and lncRNAs are involved in the pathogenesis of various diseases, such as kinds of cancers, heart failure, Alzheimer’s disease, periodontitis, human abdominal aortic aneurysm, and obesity. To date, m6A modification has been identified as an important biological function in enrichment and regulation of lncRNAs. In this review, we summarize the role of m6A modification in the regulation and function of tumor-related lncRNAs. Moreover, we discuss the potential applications and possible future directions in the field.
Collapse
Affiliation(s)
- Yufei Lan
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|